Segmentation-Guided Deep Learning for Glioma Survival Risk Prediction with Multimodal MRI

被引:0
作者
Cheng, Jianhong [1 ]
Kuang, Hulin [2 ]
Yang, Songhan [1 ]
Yue, Hailin [2 ]
Liu, Jin
Wang, Jianxin [2 ]
机构
[1] Inst Guizhou Aerosp Measuring & Testing Technol, Guiyang 550009, Peoples R China
[2] Cent South Univ, Sch Comp Sci & Engn, Hunan Prov Key Lab Bioinformat, Changsha 410083, Peoples R China
来源
BIG DATA MINING AND ANALYTICS | 2025年 / 8卷 / 02期
基金
中国国家自然科学基金;
关键词
deep learning; glioma segmentation; survival risk; multimodal magnetic resonance imaging (MRI); IDH; CODELETION; PROGNOSIS;
D O I
10.26599/BDMA.2024.9020083
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Glioma survival risk prediction is of great significance for the individualized treatment and assessment programs. Currently, most deep learning based survival prediction paradigms rely on invasive and expensive histopathology and genomics methods. However, magnetic resonance imaging (MRI) has emerged as a promising non-invasive alternative with significant prognostic potential. To leverage the benefits of MRI, we propose a segmentation-guided fully automated multimodal MRI-based survival network (SGS-Net), which can simultaneously perform glioma segmentation and survival risk prediction. Specifically, the task interrelation is addressed using a hybrid convolutional neural network-Transformer (CNN- Transformer) encoder to represent the shared high-level semantic features by co-training a decoder for glioma segmentation and a Cox model for survival prediction. Then, to ensure the effective representation of the high-level features, glioma segmentation as an auxiliary task is utilized to guide survival prediction by jointly optimizing the segmentation loss and the Cox partial log-likelihood loss. Furthermore, a pair-wise ranking loss is designed to allow the network to learn the survival difference between patients. To balance the multi-task losses, an uncertain weight manner is adopted to adaptively adjust the weights for preventing task bias. Finally, the proposed SGS-Net is assessed using a publicly available multi-institutional dataset. Experimental and visual results show that SGS-Net achieves promising segmentation performance and obtains a C-index of 81.07% for survival risk prediction, which outperforms several existing state-of-the-art methods and even histopathology-based methods. In addition, Kaplan-Meier survival analysis confirms that the prognosis risk generated by SGS-Net is consistent with the prior prognosis based on the grading or genotyping paradigms.
引用
收藏
页码:364 / 382
页数:19
相关论文
共 60 条
  • [1] Multimodal Deep Learning-Based Prognostication in Glioma Patients: A Systematic Review
    Alleman, Kaitlyn
    Knecht, Erik
    Huang, Jonathan
    Zhang, Lu
    Lam, Sandi
    DeCuypere, Michael
    [J]. CANCERS, 2023, 15 (02)
  • [2] Multi-task Deep Segmentation and Radiomics for Automatic Prognosis in Head and Neck Cancer
    Andrearczyk, Vincent
    Fontaine, Pierre
    Oreiller, Valentin
    Castelli, Joel
    Jreige, Mario
    Prior, John O.
    Depeursinge, Adrien
    [J]. PREDICTIVE INTELLIGENCE IN MEDICINE, PRIME 2021, 2021, 12928 : 147 - 156
  • [3] Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
    Bakas, Spyridon
    Akbari, Hamed
    Sotiras, Aristeidis
    Bilello, Michel
    Rozycki, Martin
    Kirby, Justin S.
    Freymann, John B.
    Farahani, Keyvan
    Davatzikos, Christos
    [J]. SCIENTIFIC DATA, 2017, 4
  • [4] Harnessing multimodal data integration to advance precision oncology
    Boehm, Kevin M.
    Khosravi, Pegah
    Vanguri, Rami
    Gao, Jianjiong
    Shah, Sohrab P.
    [J]. NATURE REVIEWS CANCER, 2022, 22 (02) : 114 - 126
  • [5] Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas
    Brat, Daniel J.
    Verhaak, Roel G. W.
    Al-dape, Kenneth D.
    Yung, W. K. Alfred
    Salama, Sofie R.
    Cooper, Lee A. D.
    Rheinbay, Esther
    Miller, C. Ryan
    Vitucci, Mark
    Morozova, Olena
    Robertson, A. Gordon
    Noushmehr, Houtan
    Laird, Peter W.
    Cherniack, Andrew D.
    Akbani, Rehan
    Huse, Jason T.
    Ciriello, Giovanni
    Poisson, Laila M.
    Barnholtz-Sloan, Jill S.
    Berger, Mitchel S.
    Brennan, Cameron
    Colen, Rivka R.
    Colman, Howard
    Flanders, Adam E.
    Giannini, Caterina
    Grifford, Mia
    Iavarone, Antonio
    Jain, Rajan
    Joseph, Isaac
    Kim, Jaegil
    Kasaian, Katayoon
    Mikkelsen, Tom
    Murray, Bradley A.
    O'Neill, Brian Patrick
    Pachter, Lior
    Parsons, Donald W.
    Sougnez, Carrie
    Sulman, Erik P.
    Vandenberg, Scott R.
    Van Meir, Erwin G.
    von Deimling, Andreas
    Zhang, Hailei
    Crain, Daniel
    Lau, Kevin
    Mallery, David
    Morris, Scott
    Paulauskis, Joseph
    Penny, Robert
    Shelton, Troy
    Sherman, Mark
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (26) : 2481 - 2498
  • [6] Burges C. J., 2010, Learning, V11, P81
  • [7] Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma
    Ceccarelli, Michele
    Barthel, Floris P.
    Malta, Tathiane M.
    Sabedot, Thais S.
    Salama, Sofie R.
    Murray, Bradley A.
    Morozova, Olena
    Newton, Yulia
    Radenbaugh, Amie
    Pagnotta, Stefano M.
    Anjum, Samreen
    Wang, Jiguang
    Manyam, Ganiraju
    Zoppoli, Pietro
    Ling, Shiyun
    Rao, Arjun A.
    Grifford, Mia
    Cherniack, Andrew D.
    Zhang, Hailei
    Poisson, Laila
    Carlotti, Carlos Gilberto, Jr.
    Tirapelli, Daniela Pretti da Cunha
    Rao, Arvind
    Mikkelsen, Tom
    Lau, Ching C.
    Yung, W. K. Alfred
    Rabadan, Raul
    Huse, Jason
    Brat, Daniel J.
    Lehman, Norman L.
    Barnholtz-Sloan, Jill S.
    Zheng, Siyuan
    Hess, Kenneth
    Rao, Ganesh
    Meyerson, Matthew
    Beroukhim, Rameen
    Cooper, Lee
    Akbani, Rehan
    Wrensch, Margaret
    Haussler, David
    Aldape, Kenneth D.
    Laird, Peter W.
    Gutmann, David H.
    Noushmehr, Houtan
    Iavarone, Antonio
    Verhaak, Roel G. W.
    [J]. CELL, 2016, 164 (03) : 550 - 563
  • [8] Prognostic significance of relative 1p/19q codeletion in oligodendroglial tumors
    Chamberlain, Marc C.
    Born, Donald
    [J]. JOURNAL OF NEURO-ONCOLOGY, 2015, 125 (02) : 249 - 251
  • [9] Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement
    Chang, Ken
    Beers, Andrew L.
    Bai, Harrison X.
    Brown, James M.
    Ly, K. Ina
    Li, Xuejun
    Senders, Joeky T.
    Kavouridis, Vasileios K.
    Boaro, Alessandro
    Su, Chang
    Bi, Wenya Linda
    Rapalino, Otto
    Liao, Weihua
    Shen, Qin
    Zhou, Hao
    Xiao, Bo
    Wang, Yinyan
    Zhang, Paul J.
    Pinho, Marco C.
    Wen, Patrick Y.
    Batchelor, Tracy T.
    Boxerman, Jerrold L.
    Arnaout, Omar
    Rosen, Bruce R.
    Gerstner, Elizabeth R.
    Yang, Li
    Huang, Raymond Y.
    Kalpathy-Cramer, Jayashree
    [J]. NEURO-ONCOLOGY, 2019, 21 (11) : 1412 - 1422
  • [10] Deep learning with multimodal representation for pancancer prognosis prediction
    Cheerla, Anika
    Gevaert, Olivier
    [J]. BIOINFORMATICS, 2019, 35 (14) : I446 - I454