A sharp threshold for Trudinger-Moser type inequalities with logarithmic kernels in dimension N

被引:0
|
作者
Cannone, Alessandro [1 ]
Cingolani, Silvia [1 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Matemat, Via Orabona 4, I-70125 Bari, Italy
关键词
<italic>N</italic> dimension; extremal functions; logarithmic kernel; threshold; Trudinger-Moser inequality; SCHRODINGER-POISSON SYSTEM; UNBOUNDED-DOMAINS; EXISTENCE; EQUATIONS; MODEL;
D O I
10.1017/prm.2025.9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we investigate Trudinger-Moser type inequalities in presence of logarithmic kernels in dimension N. A sharp threshold, depending on N, is detected for the existence of extremal functions or blow-up, where the domain is the ball or the entire space $\mathbb{R}<^>N$. We also show that the extremal functions satisfy suitable Euler-Lagrange equations. When the domain is the entire space, such equations can be derived by a N-Laplacian Schr & ouml;dinger equation strongly coupled with a higher order fractional Poisson's equation. The results extends [16] to any dimension $N \geq 2$.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Trudinger-Moser type inequalities with logarithmic weights in dimension N
    Calanchi, Marta
    Ruf, Bernhard
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 : 403 - 411
  • [2] Sharp threshold nonlinearity for maximizing the Trudinger-Moser inequalities
    Ibrahim, S.
    Masmoudi, N.
    Nakanishi, K.
    Sani, F.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (01)
  • [3] Some sharp inequalities related to Trudinger-Moser inequality
    de Souza, Manasses
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (02) : 981 - 1012
  • [4] Sharp affine Trudinger-Moser inequalities: A new argument
    Duy, Nguyen Tuan
    Lam, Nguyen
    Long Le, Phi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 765 - 778
  • [5] Sharp Singular Trudinger-Moser Inequalities Under Different Norms
    Nguyen Lam
    Lu, Guozhen
    Zhang, Lu
    ADVANCED NONLINEAR STUDIES, 2019, 19 (02) : 239 - 261
  • [6] Fractional Trudinger-Moser Type Inequalities in One Dimension
    Nguyen, Duy Tuan
    Nguyen, Triet Anh
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (03) : 1483 - 1500
  • [7] Supercritical Trudinger-Moser inequalities with logarithmic weights in dimension two
    Leuyacc, Yony Raul Santaria
    AIMS MATHEMATICS, 2023, 8 (08): : 18354 - 18372
  • [8] Trudinger-Moser type inequalities with logarithmic weights in fractional dimensions
    Xue, Jianwei
    Zhang, Caifeng
    Zhu, Maochun
    ADVANCED NONLINEAR STUDIES, 2025, 25 (01) : 152 - 170
  • [9] A SHARP TRUDINGER-MOSER TYPE INEQUALITY IN R2
    de Souza, Manasses
    do O, Joao Marcos
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (09) : 4513 - 4549
  • [10] SHARP TRUDINGER-MOSER INEQUALITIES WITH HOMOGENEOUS WEIGHTS
    Nguyen Tuan Duy
    Le Trung Nghia
    Le Long Phi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,