Comparative Analysis of Fusion Techniques for Integrating Single-cell Multiomics Datasets

被引:0
作者
Koca, Mehmet Burak [1 ]
Sevilgen, Fatih Erdogan [2 ]
机构
[1] Gebze Tekn Univ, Bilgisayar Muhendisligi Bolumu, Kocaeli, Turkiye
[2] Bogazici Univ, Veri Bilimi & Yapay Zeka Enstitusu, Istanbul, Turkiye
来源
32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024 | 2024年
关键词
single-cell; multi-omic; data integration; fusion techniques;
D O I
10.1109/SIU61531.2024.10601063
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, the performance of different fusion techniques for integrating single-cell multi-omics datasets is compared. Integrated measurements enable the unveiling of complex interaction networks between cells and heterogeneous structures that remain unseen in a single omics type. The applied fusion technique for integration alters the scope and characteristics of the integrated measurements. Variational auto encoder (VAE) models incorporating early, intermediate, and late fusion techniques were compared in this study in order to compare the effect of different fusion techniques. CITE-seq datasets containing proteomic and transcriptomic measurements from single-cells are utilized in experiments. Both computational and biological performance metrics were employed for comparing the integrated measurements. According to the experimental results, the fusion models improved the silhouette score of the raw data between 10% and 23%. The late fusion model with the highest performance in computational metric graph connectivity improved the performance of the raw data by 4%. The results demonstrate that the late fusion technique outperforms its competitors for integrating single-cell multi-omics datasets.
引用
收藏
页数:4
相关论文
共 14 条
[1]   Computational principles and challenges in single-cell data integration [J].
Argelaguet, Ricard ;
Cuomo, Anna S. E. ;
Stegle, Oliver ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2021, 39 (10) :1202-1215
[2]   MOFA plus : a statistical framework for comprehensive integration of multi-modal single-cell data [J].
Argelaguet, Ricard ;
Arnol, Damien ;
Bredikhin, Danila ;
Deloro, Yonatan ;
Velten, Britta ;
Marioni, John C. ;
Stegle, Oliver .
GENOME BIOLOGY, 2020, 21 (01)
[3]   Multimodal deep learning approaches for single-cell multi-omics data integration [J].
Athaya, Tasbiraha ;
Ripan, Rony Chowdhury ;
Li, Xiaoman ;
Hu, Haiyan .
BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
[4]   The technological landscape and applications of single-cell multi-omics [J].
Baysoy, Alev ;
Bai, Zhiliang ;
Satija, Rahul ;
Fan, Rong .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2023, 24 (10) :695-713
[5]   Early, intermediate and late fusion strategies for robust deep learning-based multimodal action recognition [J].
Boulahia, Said Yacine ;
Amamra, Abdenour ;
Madi, Mohamed Ridha ;
Daikh, Said .
MACHINE VISION AND APPLICATIONS, 2021, 32 (06)
[6]   Multi-omics single-cell data integration and regulatory inference with graph-linked embedding [J].
Cao, Zhi-Jie ;
Gao, Ge .
NATURE BIOTECHNOLOGY, 2022, 40 (10) :1458-+
[7]   Integrated analysis of multimodal single-cell data [J].
Hao, Yuhan ;
Hao, Stephanie ;
Andersen-Nissen, Erica ;
Mauck, William M. I. I. I. I. I. I. ;
Zheng, Shiwei ;
Butler, Andrew ;
Lee, Maddie J. ;
Wilk, Aaron J. ;
Darby, Charlotte ;
Zager, Michael ;
Hoffman, Paul ;
Stoeckius, Marlon ;
Papalexi, Efthymia ;
Mimitou, Eleni P. ;
Jain, Jaison ;
Srivastava, Avi ;
Stuart, Tim ;
Fleming, Lamar M. ;
Yeung, Bertrand ;
Rogers, Angela J. ;
McElrath, Juliana M. ;
Blish, Catherine A. ;
Gottardo, Raphael ;
Smibert, Peter ;
Satija, Rahul .
CELL, 2021, 184 (13) :3573-+
[8]   ON INFORMATION AND SUFFICIENCY [J].
KULLBACK, S ;
LEIBLER, RA .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01) :79-86
[9]   Mapping single-cell data to reference atlases by transfer learning [J].
Lotfollahi, Mohammad ;
Naghipourfar, Mohsen ;
Luecken, Malte D. ;
Khajavi, Matin ;
Buettner, Maren ;
Wagenstetter, Marco ;
Avsec, Ziga ;
Gayoso, Adam ;
Yosef, Nir ;
Interlandi, Marta ;
Rybakov, Sergei ;
Misharin, Alexander, V ;
Theis, Fabian J. .
NATURE BIOTECHNOLOGY, 2022, 40 (01) :121-+
[10]  
Kingma DP, 2014, Arxiv, DOI [arXiv:1312.6114, 10.48550/arXiv.1312.6114]