Topological and Fractal Analysis of Nanostructured Metal-Dielectric Films

被引:0
|
作者
Bolesta, Ivan [1 ]
Kushnir, Oleksii [1 ]
Karbovnyk, Ivan [1 ]
Klym, Halyna [2 ]
Konuhova, Marina [3 ]
Popov, Anatoli I. [3 ]
机构
[1] Ivan Franko Natl Univ Lviv, Dept Radiophys & Comp Technol, 107 Tarnavskogo Str, UA-79017 Lvov, Ukraine
[2] Lviv Polytech Natl Univ, Dept Specialized Comp Syst, 12 Bandera Str, UA-79013 Lvov, Ukraine
[3] Univ Latvia, Inst Solid State Phys, Kengaraga 8, LV-1063 Riga, Latvia
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 06期
关键词
atomic force microscopy; thin films; topology; surface; nanostructures; fractal; percolation; SURFACE-PLASMON RESONANCE; OPTICAL-PROPERTIES; AG; NANOPARTICLES; MICROSCOPY; AU;
D O I
10.3390/app15063250
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The surface topology and fractal dimension of ultrathin silver and gold films have been investigated utilizing atomic force microscopy. These films were formed at the early stages of metal deposition through thermal evaporation and have pre-percolation thicknesses. They contain both metallic and insulating (void) phases, making them metal-dielectric composites. We identified the main parameters of the microstructure, such as the size of the metallic particles and surface roughness, as well as the dependence of these parameters on the film thickness and substrate parameters. Approaches to processing data, including correlation analysis, were employed. An analysis of dependencies and an explanation of their appearance were conducted. The discussion also addressed the limitations of using atomic force microscopy for studying ultrathin metal films. We determined the various types of fractal dimensions, considering the film topology for two- as well as three-dimensional objects. Depending on the actual dimensions of the phase boundary for silver films, a maximum was found. Different approaches to determining the fractal dimensions in 3Ds case show a similar dependence, but different values.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] METAL-DIELECTRIC RADOMES
    SOLOVYANOVA, IP
    NAYMUSHIN, MP
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1991, 46 (11) : 99 - 102
  • [22] Interface-Induced Plasmon Nonhomogeneity in Nanostructured Metal-Dielectric Planar Metamaterial
    Kovalev, A. I.
    Wainstein, D. L.
    Rashkovskiy, A. Yu.
    Gago, R.
    Soldera, F.
    Endrino, J. L.
    Fox-Rabinovich, G. S.
    JOURNAL OF NANOMATERIALS, 2015, 2015
  • [23] X-ray reflectometry of nanocomposite metal-dielectric films
    Petrakov, A. P.
    Kotov, L. N.
    Kalinin, Yu. E.
    Sitnikov, A. V.
    INORGANIC MATERIALS, 2009, 45 (14) : 1640 - 1642
  • [24] Optical nonlinearity enhancement of graded metal-dielectric composite films
    Huang, JP
    Dong, L
    Yu, KW
    EUROPHYSICS LETTERS, 2004, 67 (05): : 854 - 858
  • [25] METAL-DIELECTRIC PHOTOSYSTEMS
    ARSENAULT, R
    BOIVIN, G
    APPLIED OPTICS, 1978, 17 (05): : 736 - 739
  • [26] X-ray reflectometry of nanocomposite metal-dielectric films
    A. P. Petrakov
    L. N. Kotov
    Yu. E. Kalinin
    A. V. Sitnikov
    Inorganic Materials, 2009, 45 : 1640 - 1642
  • [27] Surface-plasmon polaritons on metal-dielectric nanocomposite films
    Shi, Zhimin
    Piredda, Giovanni
    Liapis, Andreas C.
    Nelson, Mark A.
    Novotny, Lukas
    Boyd, Robert W.
    OPTICS LETTERS, 2009, 34 (22) : 3535 - 3537
  • [28] Plasmon localization and local field distribution in metal-dielectric films
    Genov, DA
    Sarychev, AK
    Shalaev, VM
    PHYSICAL REVIEW E, 2003, 67 (05):
  • [29] Experimental and theoretical study of metal-dielectric percolating films at microwaves
    Lagarkov, AN
    Rozanov, KN
    Sarychev, AK
    Simonov, NA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 241 (1-2) : 199 - 206
  • [30] Plasmon-polariton effects in nanostructured metal-dielectric photonic crystals and metamaterials
    Tikhodeev, S. G.
    Gippius, N. A.
    PHYSICS-USPEKHI, 2009, 52 (09) : 945 - 949