Optimizing spot-scanning proton arc therapy with a novel spot sparsity approach

被引:1
作者
Fan, Qingkun [1 ]
Zhao, Lewei [2 ]
Li, Xiaoqiang [3 ]
Qian, Yujia [4 ]
Dao, Riao [4 ]
Hu, Jie [1 ]
Zhang, Sheng [5 ,6 ]
Yang, Kunyu [5 ,6 ]
Lu, Xiliang [1 ]
Yang, Zhijian [1 ]
Ding, Xuanfeng [3 ]
Dai, Shuyang [1 ,6 ]
Liu, Gang [5 ,6 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[2] Stanford Univ, Dept Radiat Oncol, Stanford, CA USA
[3] Corewell Hlth William Beaumont Univ Hosp, Dept Radiat Oncol, Royal Oak, MI 48073 USA
[4] Wuhan Univ, Sch Phys & Technol, Wuhan, Peoples R China
[5] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Canc Ctr, Wuhan, Peoples R China
[6] Hubei Key Lab Precis Radiat Oncol, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
delivery efficiency; proton arc therapy; spot number; OPTIMIZATION; ROBUST;
D O I
10.1002/mp.17517
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundOne of the main challenges of utilizing spot-scanning proton arc therapy (SPArc) in routine clinics is treatment delivery efficiency. Spot reduction, which relies on spot sparsity optimization (SSO), is crucial for achieving high delivery efficiency in SPArc.PurposeThis study aims to develop a novel SSO approach based on the alternating directions method of multipliers (ADMM) for SPArc to achieve high treatment delivery efficiency and maintain optimal dosimetric plan quality.MethodsIn this study, SSO for SPArc is based on the least-square dose fidelity term with L0-norm regularization. The novel optimization approach is based on the ADMM framework, in which the minimum monitor unit constraint was considered to improve the plan quality. A state-of-the-art SSO method, the primal-dual active set with continuation (PDASC) algorithm published previously, was utilized as a benchmark. Two SPArc plan groups with the same beam assignment and clinical constraint were generated, in which the former group was SPArc plan with SSO utilizing ADMM, denoted as SPArcADMM$\text{SPArc}_{\text{ADMM}}$, and the later group was SPArc with SSO utilizing PDASC, denoted as SPArcPDASC$\text{SPArc}_{\text{PDASC}}$. Nine clinical cases included five different cancer sites (brain, lung, liver, prostate, and head&neck cancer) were used. The SSO method's performance was evaluated in terms of spot sparsity level (the number of zero-valued elements divided by the total number of elements), beam delivery time, dosimetric plan quality, and plan robustness.ResultsCompared to the SPArcPDASC$\text{SPArc}_{\text{PDASC}}$ plan, the SPArcADMM$\text{SPArc}_{\text{ADMM}}$ plan exhibits superior sparsity and higher delivery efficiency while maintaining good plan quality.ConclusionsThis study introduces a novel spot sparsity optimization approach using the ADMM framework to improve the delivery efficiency of SPArc. Compared to the existing state-of-the-art SSO method, such an approach could further enhance delivery efficiency while maintaining good plan quality, which could promote the implementation of SPArc in the clinic's.
引用
收藏
页码:1789 / 1797
页数:9
相关论文
共 50 条
[41]   Simultaneous reduction of number of spots and energy layers in intensity modulated proton therapy for rapid spot scanning delivery [J].
Fu, Anqi ;
Taasti, Vicki T. ;
Zarepisheh, Masoud .
MEDICAL PHYSICS, 2024, 51 (08) :5722-5737
[42]   Gantry-based pencil beam scanning proton therapy for uveal melanoma: IMPT versus proton arc therapy [J].
Qi, Hang ;
Hu, Lei ;
Huang, Sheng ;
Lee, Yen-Po ;
Yu, Francis ;
Chen, Qing ;
Yang, Yunjie ;
Kang, Minglei ;
Zhai, Huifang ;
Vermeulen, Milo ;
Shim, Andy ;
Park, Peter ;
Ding, Xuanfeng ;
Zhou, Jun ;
Abramson, David H. ;
Francis, Jasmine H. ;
Simone, Charles B. ;
Barker, Christopher A. ;
Lin, Haibo .
RADIATION ONCOLOGY, 2025, 20 (01)
[43]   Mixed-size spot scanning with a compact large momentum acceptance superconducting (LMA-SC) gantry beamline for proton therapy [J].
Wang, Wei ;
Liu, Xu ;
Liao, Yicheng ;
Zeng, Yiling ;
Chen, Yu ;
Yu, Benzhaoxia ;
Yang, Zhiyong ;
Gao, Hao ;
Qin, Bin .
PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (11)
[44]   Technical Note: Optimization of spot and trimmer position during dynamically collimated proton therapy [J].
Smith, Blake R. ;
Hyer, Daniel E. ;
Flynn, Ryan T. ;
Culberson, Wesley S. .
MEDICAL PHYSICS, 2019, 46 (04) :1922-1930
[45]   A static beam delivery device for fast scanning proton arc-therapy [J].
Nesteruk, K. P. ;
Bolsi, A. ;
Lomax, A. J. ;
Meer, D. ;
van de Water, S. ;
Schippers, J. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (05)
[46]   Three-dimensional gamma criterion for patient-specific quality assurance of spot scanning proton beams [J].
Chang, Chang ;
Poole, Kendra L. ;
Teran, Anthony V. ;
Luckman, Scott ;
Mah, Dennis .
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2015, 16 (05) :381-388
[47]   Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system [J].
Zhu, X. R. ;
Poenisch, F. ;
Lii, M. ;
Sawakuchi, G. O. ;
Titt, U. ;
Bues, M. ;
Song, X. ;
Zhang, X. ;
Li, Y. ;
Ciangaru, G. ;
Li, H. ;
Taylor, M. B. ;
Suzuki, K. ;
Mohan, R. ;
Gillin, M. T. ;
Sahoo, N. .
MEDICAL PHYSICS, 2013, 40 (04)
[48]   A novel energy layer optimization strategy based on machine specific delivery sequence for proton arc therapy [J].
Wang, Siman ;
Fan, Qingkun ;
Zhao, Lewei ;
Korevaar, Erik ;
Ding, Xuanfeng ;
Zhang, Sheng ;
Yang, Kunyu ;
Qin, You ;
de Jong, Bas A. ;
Both, Stefan ;
Quan, Hong ;
Tan, Zhijie ;
Tu, Biao ;
Liu, Gang .
PHYSICS IN MEDICINE AND BIOLOGY, 2025, 70 (14)
[49]   Comparison of two methods for minimizing the effect of delayed charge on the dose delivered with a synchrotron based discrete spot scanning proton beam [J].
Whitaker, Thomas J. ;
Beltran, Chris ;
Tryggestad, Erik ;
Bues, Martin ;
Kruse, Jon J. ;
Remmes, Nicholas B. ;
Tasson, Alexandria ;
Herman, Michael G. .
MEDICAL PHYSICS, 2014, 41 (08) :66-78
[50]   Uncertainty-aware spot rejection rate as quality metric for proton therapy using a digital tracking calorimeter [J].
Schilling, Alexander ;
Aehle, Max ;
Alme, Johan ;
Barnafoeldi, Gergely Gabor ;
Bodova, Tea ;
Borshchov, Vyacheslav ;
van den Brink, Anthony ;
Eikeland, Viljar ;
Feofilov, Gregory ;
Garth, Christoph ;
Gauger, Nicolas R. ;
Grottvik, Ola ;
Helstrup, Havard ;
Igolkin, Sergey ;
Keidel, Ralf ;
Kobdaj, Chinorat ;
Kortus, Tobias ;
Leonhardt, Viktor ;
Mehendale, Shruti ;
Mulawade, Raju Ningappa ;
Odland, Odd Harald ;
O'Neill, George ;
Papp, Gabor ;
Peitzmann, Thomas ;
Pettersen, Helge Egil Seime ;
Piersimoni, Pierluigi ;
Protsenko, Maksym ;
Rauch, Max ;
Rehman, Attiq Ur ;
Richter, Matthias ;
Roehrich, Dieter ;
Santana, Joshua ;
Seco, Joao ;
Songmoolnak, Arnon ;
Sudar, Akos ;
Tambave, Ganesh ;
Tymchuk, Ihor ;
Ullaland, Kjetil ;
Varga-Kofarago, Monika ;
Volz, Lennart ;
Wagner, Boris ;
Wendzel, Steffen ;
Wiebel, Alexander ;
Xiao, Renzheng ;
Yang, Shiming ;
Zillien, Sebastian .
PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (19)