Deep learning for tibial plateau fracture detection and classification

被引:2
作者
van der Gaast, N. [1 ,2 ,3 ]
Bagave, P. [4 ]
Assink, N. [5 ]
Broos, S. [1 ,2 ]
Jaarsma, R. L. [1 ,2 ]
Edwards, M. J. R. [3 ]
Hermans, E. [3 ]
Ijpma, F. F. A. [5 ]
Ding, A. Y. [4 ]
Doornberg, J. N. [1 ,2 ,5 ]
Oosterhoff, J. H. F. [4 ,5 ]
机构
[1] Flinders Med Ctr, Dept Orthopaed & Trauma Surg, Adelaide, SA, Australia
[2] Flinders Univ S Australia, Adelaide, SA, Australia
[3] Radboud Univ Nijmegen, Radboud Univ Med Ctr, Dept Trauma Surg, Nijmegen, Netherlands
[4] Delft Univ Technol, Fac Technol Policy & Management, Dept Engn Syst & Serv, Delft, Netherlands
[5] Univ Groningen, Univ Med Ctr Groningen, Dept Orthopaed & Trauma Surg, Groningen, Netherlands
关键词
Tibial plateau fractures; Deep learning; Artificial intelligence; COMPUTED-TOMOGRAPHY; ARTIFICIAL-INTELLIGENCE; OBSERVER RELIABILITY; SYSTEMS; INTRAOBSERVER; SCHATZKER; 3-COLUMN; IMPACT; INTER; AO;
D O I
10.1016/j.knee.2025.02.001
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background: Deep learning (DL) has been shown to be successful in interpreting radiographs and aiding in fracture detection and classification. However, no study has aimed to develop a computer vision model for tibia plateau fractures using the Schatzker classification. Therefore, this study aims to develop a deep learning model for (1) detection of tibial plateau fractures and (2) classification according to the Schatzker classification. Methods: A multicenter approach was performed for the collection of radiographs of patients with tibia plateau fractures. Both anteroposterior and lateral images were uploaded into an annotation software and manually labelled and annotated. The dataset was balanced for optimizing model development and split into a training set and a test set. We trained two convolutional neural networks (GoogleNet and ResNet) for the detection and classification of tibia plateau fractures following the Schatzker classification. Results: A total of 1506 knee radiographs from 753 patients, including 368 tibial plateau fractures and 385 healthy knees, were used to create the algorithm. The GoogleNet algorithm demonstrated high sensitivity (92.7%) but intermediate accuracy (70.4%) and positive predictive value (64.4%) in detecting tibial plateau fractures, indicating reliable detection of fractured cases. It exhibited limited success in accurately classifying fractures according to the Schatzker system, achieving an accuracy of only 34.6% and a sensitivity of 32.1%. Conclusion: This study shows that detection of tibial plateau fractures is a task that a DL algorithm can grasp; further refinement is necessary to enhance their accuracy in fracture classification. Computer vision models might improve using different classification systems, as the current Schatzker classification suffers from a low interobserver agreement on conventional radiographs. (c) 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC
引用
收藏
页码:81 / 89
页数:9
相关论文
共 41 条
[1]  
Cruz-Roa AA, 2013, LECT NOTES COMPUT SC, V8150, P403, DOI 10.1007/978-3-642-40763-5_50
[2]   Two column classification of tibial plateau fractures; description, clinical application and reliability [J].
Anwar, Adeel ;
Zhang, Yufang ;
Zhao, Zhi ;
Gao, Yanming ;
Sha, Lin ;
Lv, Decheng ;
Zhang, Zhen ;
Lv, Gang ;
Zhang, Yufen ;
Nazir, Muhammad Umar ;
Qasim, Wasim ;
Wang, Yanfeng .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2019, 50 (06) :1247-1255
[3]   What Is the Patient-reported Outcome and Complication Incidence After Operative Versus Nonoperative Treatment of Minimally Displaced Tibial Plateau Fractures? [J].
Assink, Nick ;
Vaartjes, Thijs P. ;
Kramer, Christiaan J. S. A. ;
Bosma, Eelke ;
Nijveldt, Robert J. ;
ten Brinke, Joost G. ;
de Groot, Reinier ;
Hoekstra, Harm ;
IJpma, Frank F. A. .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2024, 482 (10) :1744-1752
[4]   The AO classification system for tibial plateau fractures: An independent inter and intraobserver agreement study [J].
Besa, Pablo ;
Angulo, Manuela ;
Vial, Raimundo ;
Vega, Rafael ;
Irribarra, Luis ;
Lobos, Daniel ;
Sandoval, Felipe ;
Irarrazaval, Sebastian .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2023, 54
[5]   The impact of stereo-visualisation of three-dimensional CT datasets on the inter- and intraobserver reliability of the AO/OTA and Neer classifications in the assessment of fractures of the proximal humerus [J].
Brunner, A. ;
Honigmann, P. ;
Treumann, T. ;
Babst, R. .
JOURNAL OF BONE AND JOINT SURGERY-BRITISH VOLUME, 2009, 91B (06) :766-771
[6]   Classification systems for tibial plateau fractures; Does computed tomography scanning improve their reliability? [J].
Brunner, Alexander ;
Horisberger, Monika ;
Ulmar, Benjamin ;
Hoffmann, Alexander ;
Babst, Reto .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2010, 41 (02) :173-178
[7]   A Machine Learning Algorithm to Estimate the Probability of a True Scaphoid Fracture After Wrist Trauma [J].
Bulstra, Anne Eva J. .
JOURNAL OF HAND SURGERY-AMERICAN VOLUME, 2022, 47 (08) :E14-718
[8]   The Impact of Computed Tomography on Decision Making in Tibial Plateau Fractures [J].
Castiglia, Marcello Teixeira ;
Nogueira-Barbosa, Marcello Henrique ;
Vieira Messias, Andre Marcio ;
Salim, Rodrigo ;
Fogagnolo, Fabricio ;
Schatzker, Joseph ;
Kfuri, Mauricio .
JOURNAL OF KNEE SURGERY, 2018, 31 (10) :1007-1014
[9]   Impact of CT scan on treatment plan and fracture classification of tibial plateau fractures [J].
Chan, PSH ;
Klimkiewicz, JJ ;
Luchetti, WT ;
Esterhai, JL ;
Kneeland, JB ;
Dalinka, MK .
JOURNAL OF ORTHOPAEDIC TRAUMA, 1997, 11 (07) :484-489
[10]   Automated detection and classification of the proximal humerus fracture by using deep learning algorithm [J].
Chung, Seok Won ;
Han, Seung Seog ;
Lee, Ji Whan ;
Oh, Kyung-Soo ;
Kim, Na Ra ;
Yoon, Jong Pil ;
Kim, Joon Yub ;
Moon, Sung Hoon ;
Kwon, Jieun ;
Lee, Hyo-Jin ;
Noh, Young-Min ;
Kim, Youngjun .
ACTA ORTHOPAEDICA, 2018, 89 (04) :468-473