Category-Level 6D Object Pose Estimation in the Wild: A Semi-Supervised Learning Approach and A New Dataset

被引:0
作者
Fu, Yang [1 ]
Wang, Xiaolong [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022) | 2022年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
6D object pose estimation is one of the fundamental problems in computer vision and robotics research. While a lot of recent efforts have been made on generalizing pose estimation to novel object instances within the same category, namely category-level 6D pose estimation, it is still restricted in constrained environments given the limited number of annotated data. In this paper, we collect Wild6D, a new unlabeled RGBD object video dataset with diverse instances and backgrounds. We utilize this data to generalize category-level 6D object pose estimation in the wild with semi-supervised learning. We propose a new model, called Rendering for Pose estimation network (RePoNet), that is jointly trained using the free ground-truths with the synthetic data, and a silhouette matching objective function on the real-world data. Without using any 3D annotations on real data, our method outperforms state-of-the-art methods on the previous dataset and our Wild6D test set (with manual annotations for evaluation) by a large margin. Project page with Wild6D data: https://oasisyang.github.io/semi-pose/.
引用
收藏
页数:15
相关论文
共 57 条
  • [21] LAOSATIT K, 2020, EUR C COMP VIS, P133, DOI DOI 10.1007/978-3-030-20008-4_10
  • [22] UDA-COPE: Unsupervised Domain Adaptation for Category-level Object Pose Estimation
    Lee, Taeyeop
    Lee, Byeong-Uk
    Shin, Inkyu
    Choe, Jaesung
    Shin, Ukcheol
    Kweon, In So
    Yoon, Kuk-Jin
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14871 - 14880
  • [23] A Unified Framework for Multi-view Multi-class Object Pose Estimation
    Li, Chi
    Bai, Jin
    Hager, Gregory D.
    [J]. COMPUTER VISION - ECCV 2018, PT XVI, 2018, 11220 : 263 - 281
  • [24] Li Y, 2020, INT J COMPUT VISION, V128, P657, DOI [10.1007/s11263-019-01250-9, 10.1007/978-3-030-01231-1_42]
  • [25] Lin Jiehong, 2021, ARXIV210306526
  • [26] Lin Yunzhi, 2021, ARXIV210906161
  • [27] Convolution in the Cloud: Learning Deformable Kernels in 3D Graph Convolution Networks for Point Cloud Analysis
    Lin, Zhi-Hao
    Huang, Sheng-Yu
    Wang, Yu-Chiang Frank
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1797 - 1806
  • [28] Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning
    Liu, Shichen
    Li, Tianye
    Chen, Weikai
    Li, Hao
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7707 - 7716
  • [29] Manhardt Fabian, 2020, ARXIV200305848
  • [30] Marder-Eppstein E., 2016, ACM SIGGRAPH 2016 Real-Time Live! 2016, P25, DOI DOI 10.1145/2933540.2933550