Category-Level 6D Object Pose Estimation in the Wild: A Semi-Supervised Learning Approach and A New Dataset

被引:0
作者
Fu, Yang [1 ]
Wang, Xiaolong [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022) | 2022年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
6D object pose estimation is one of the fundamental problems in computer vision and robotics research. While a lot of recent efforts have been made on generalizing pose estimation to novel object instances within the same category, namely category-level 6D pose estimation, it is still restricted in constrained environments given the limited number of annotated data. In this paper, we collect Wild6D, a new unlabeled RGBD object video dataset with diverse instances and backgrounds. We utilize this data to generalize category-level 6D object pose estimation in the wild with semi-supervised learning. We propose a new model, called Rendering for Pose estimation network (RePoNet), that is jointly trained using the free ground-truths with the synthetic data, and a silhouette matching objective function on the real-world data. Without using any 3D annotations on real data, our method outperforms state-of-the-art methods on the previous dataset and our Wild6D test set (with manual annotations for evaluation) by a large margin. Project page with Wild6D data: https://oasisyang.github.io/semi-pose/.
引用
收藏
页数:15
相关论文
共 57 条
  • [1] Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild with Pose Annotations
    Ahmadyan, Adel
    Zhang, Liangkai
    Ablavatski, Artsiom
    Wei, Jianing
    Grundmann, Matthias
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7818 - 7827
  • [2] VIRTUAL REALITY TECHNOLOGY - A TUTORIAL
    BIOCCA, F
    [J]. JOURNAL OF COMMUNICATION, 1992, 42 (04) : 23 - 72
  • [3] Chen K., 2021, P IEEE CVF INT C COM, P2773
  • [4] Chen W., 2019, Advances in neural information processing systems, P9609
  • [5] FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose Estimation with Decoupled Rotation Mechanism
    Chen, Wei
    Jia, Xi
    Chang, Hyung Jin
    Duan, Jinming
    Shen, Linlin
    Leonardis, Ales
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1581 - 1590
  • [6] G2L-Net: Global to Local Network for Real-time 6D Pose Estimation with Embedding Vector Features
    Chen, Wei
    Jia, Xi
    Chang, Hyung Jin
    Duan, Jinming
    Leonardis, Ales
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4232 - 4241
  • [7] Choi Sungjoon., 2016, CoRR
  • [8] Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis
    Dai, Angela
    Qi, Charles Ruizhongtai
    Niessner, Matthias
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6545 - 6554
  • [9] GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting
    Di, Yan
    Zhang, Ruida
    Lou, Zhiqiang
    Manhardt, Fabian
    Ji, Xiangyang
    Navab, Nassir
    Tombari, Federico
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6771 - 6781
  • [10] Gu Wang, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12346), P108, DOI 10.1007/978-3-030-58452-8_7