Spatiotemporal Variations in Sea Ice Albedo: A Study of the Dynamics of Sea Ice Albedo in the Sea of Okhotsk

被引:0
作者
Zhou, Yingzhen [1 ,5 ]
Li, Wei [1 ,5 ]
Chen, Nan [1 ,5 ]
Toyota, Takenobu [2 ]
Fan, Yongzhen [3 ]
Tanikawa, Tomonori [4 ]
Stamnes, Knut [1 ,5 ]
机构
[1] Stevens Inst Technol, Dept Phys, Hoboken, NJ 07307 USA
[2] Hokkaido Univ, Inst Low Temp Sci, Sapporo 0600808, Japan
[3] Univ Maryland, Cooperat Inst Satellite Earth Syst Studies CISESS, Earth Syst Sci Interdisciplinary Ctr ESS, College Pk, MD 20740 USA
[4] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba 3050052, Japan
[5] Stevens Inst Technol, Light & Life Lab, Burchard Bldg, Hoboken, NJ 07307 USA
关键词
sea ice; albedo; sea ice contentration; Sea of Okhotsk; SURFACE HEAT-BUDGET; RETRIEVAL; ALGORITHM; BRDF;
D O I
10.3390/rs17050772
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study utilizes a novel albedo retrieval framework combining radiative transfer modeling with scientific machine learning (RTM-SciML) to investigate sea ice dynamics in the Sea of Okhotsk. By validating albedo estimates derived from the MODIS sensor against in situ pyranometer measurements near the Hokkaido coast, we achieved a robust Pearson coefficient of 0.86 and an RMSE of 0.089 for all sea ice types, with even higher correlations for specific surfaces like snow-covered ice (Pearson-r = 0.89) and meltwater/open water (Pearson-r = 0.90). This confirms the framework's efficacy across varying surface conditions. Cross-sensor comparisons between MODIS and the Second-Generation Global Imager (SGLI) further demonstrated its consistency, achieving an overall Pearson-r of 0.883 and RMSE of 0.036. Integrating these albedo estimates with sea ice concentration data from the Advanced Microwave Scanning Radiometer 2 (AMSR-2), we analyzed the complex role of the Sea of Okhotsk's polynya systems and ice interactions in regional climate processes. Our results highlight the synergistic advantage of pairing optical sensors, like MODIS and SGLI, with microwave sensors, offering a more comprehensive understanding of evolving sea ice conditions and paving the way for future climate and cryosphere studies.
引用
收藏
页数:21
相关论文
共 27 条
  • [1] Martin S., Drucker R., Yamashita K., The production of ice and dense shelf water in the Okhotsk Sea polynyas, J. Geophys. Res. Ocean, 103, pp. 27771-27782, (1998)
  • [2] Simizu D., Ohshima K.I., Ono J., Fukamachi Y., Mizuta G., What drives the southward drift of sea ice in the Sea of Okhotsk?, Prog. Oceanogr, 126, pp. 33-43, (2014)
  • [3] Toyota T., Wakatsuchi M., Characteristics of the surface heat budget during the ice-growth season in the southern Sea of Okhotsk, Ann. Glaciol, 33, pp. 230-236, (2001)
  • [4] Toyota T., Ukita J., Ohshima K.I., Wakatsuchi M., Muramoto K., A Measurement of Sea Ice Albedo over the Southwestern Okhotsk Sea, J. Meteorol. Soc. Jpn. Ser. II, 77, pp. 117-133, (1999)
  • [5] Lucht W., Schaaf C., Strahler A., An Algorithm for the Retrieval of Albedo from Space Using Semiempirical BRDF Models, IEEE Trans. Geosci. Remote Sens, 38, pp. 977-998, (2000)
  • [6] Schaaf C.B., Gao F., Strahler A.H., Lucht W., Li X., Tsang T., Strugnell N.C., Zhang X., Jin Y., Muller J.P., Et al., First Operational BRDF, Albedo Nadir Reflectance Products from MODIS, Remote Sens. Environ, 83, pp. 135-148, (2002)
  • [7] Zege E., Malinka A., Katsev I., Prikhach A., Heygster G., Istomina L., Birnbaum G., Schwarz P., Algorithm to retrieve the melt pond fraction and the spectral albedo of Arctic summer ice from satellite optical data, Remote Sens. Environ, 163, pp. 153-164, (2015)
  • [8] Istomina L., Retrieval of Sea Ice Surface Melt Using OLCI Data Onboard Sentinel-3, Am. Geophys. Union Fall Meet, 2020, (2020)
  • [9] Qu Y., Liang S., Liu Q., Li X., Feng Y., Liu S., Estimating Arctic Sea-Ice Shortwave Albedo from MODIS Data, Remote Sens. Environ, 186, pp. 32-46, (2016)
  • [10] Peng J., Yu Y., Yu P., Liang S., The VIIRS Sea-Ice Albedo Product Generation and Preliminary Validation, Remote Sens, 10, (2018)