Integrated Data Analytics and Regression Techniques for Real-time Anomaly Detection in Industrial Processes

被引:0
|
作者
Faber, Rastislav [1 ]
Mojto, Martin [1 ]
Lubusky, Karol [2 ]
Paulen, Radoslav [1 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Chem & Food Technol, Bratislava, Slovakia
[2] Slovnaft AS, Bratislava, Slovakia
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 14期
关键词
Streaming data; Anomaly detection; Outlier detection; Regression; SERIES;
D O I
10.1016/j.ifacol.2024.08.356
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a data-based monitoring approach designed for industrial data classification, aiming to minimize misclassifications of normal operations and to maximize the detection of anomalies and outliers. We make use of moving-horizon approaches and regression methods. Through evaluation of various algorithms on an industrial dataset, we showcase the effectiveness of the classification. As per our findings, effective detection can only be realized in conjunction of moving-horizon estimator with a regression model trained on historical measurements. The best prediction models consistently achieve accurate detection within the approved process tolerance, highlighting the efficacy of the proposed approach. Copyright (C) 2024 The Authors.
引用
收藏
页码:319 / 324
页数:6
相关论文
共 50 条
  • [1] Using Federated Learning in Anomaly Detection and Analytics on Real-time Streaming Data of Healthcare
    Yogitha, M.
    Srinivas, K. S.
    PROCEEDINGS OF 2023 THE 7TH INTERNATIONAL CONFERENCE ON GRAPHICS AND SIGNAL PROCESSING, ICGSP, 2023, : 29 - 34
  • [2] Vehicular Data Acquisition and Analytics System for Real-Time Driver Behavior Monitoring and Anomaly Detection
    Nirmali, Bhashinee
    Wickramasinghe, Shanika
    Munasinghe, Thivanka
    Amalraj, C. R. J.
    Bandara, H. M. N. Dilum
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2017, : 481 - 486
  • [3] Real-Time Adaptive Anomaly Detection in Industrial IoT Environments
    Raeiszadeh, Mahsa
    Ebrahimzadeh, Amin
    Glitho, Roch H.
    Eker, Johan
    Mini, Raquel A. F.
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (06): : 6839 - 6856
  • [4] Unsupervised real-time anomaly detection for streaming data
    Ahmad, Subutai
    Lavin, Alexander
    Purdy, Scott
    Agha, Zuha
    NEUROCOMPUTING, 2017, 262 : 134 - 147
  • [5] Real-Time Deep Anomaly Detection Framework for Multivariate Time-Series Data in Industrial IoT
    Nizam, Hussain
    Zafar, Samra
    Lv, Zefeng
    Wang, Fan
    Hu, Xiaopeng
    IEEE SENSORS JOURNAL, 2022, 22 (23) : 22836 - 22849
  • [6] Distributed Real-Time Anomaly Detection in Networked Industrial Sensing Systems
    Chen, Po-Yu
    Yang, Shusen
    McCann, Julie A.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (06) : 3832 - 3842
  • [7] A real-time network based anomaly detection in industrial control systems
    Zare, Faeze
    Mahmoudi-Nasr, Payam
    Yousefpour, Rohollah
    INTERNATIONAL JOURNAL OF CRITICAL INFRASTRUCTURE PROTECTION, 2024, 45
  • [8] Real-time big data processing for anomaly detection: A Survey
    Habeeb, Riyaz Ahamed Ariyaluran
    Nasaruddin, Fariza
    Gani, Abdullah
    Hashem, Ibrahim Abaker Targio
    Ahmed, Ejaz
    Imran, Muhammad
    INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2019, 45 : 289 - 307
  • [9] Real-time anomaly detection in gas sensor streaming data
    Wu, Haibo
    Shi, Shiliang
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2021, 14 (01) : 81 - 88
  • [10] Real-time Bayesian anomaly detection in streaming environmental data
    Hill, David J.
    Minsker, Barbara S.
    Amir, Eyal
    WATER RESOURCES RESEARCH, 2009, 45