Graph distillation with network symmetry

被引:0
作者
Lin, Feng [1 ]
He, Jia-Lin [1 ,2 ,3 ]
机构
[1] China West Normal Univ, Nanchong 637000, Peoples R China
[2] Internet Things Percept & Big Data Anal Key Lab Na, Nanchong 637000, Peoples R China
[3] China West Normal Univ, Inst Artificial Intelligence, Nanchong 637000, Peoples R China
基金
中国国家自然科学基金;
关键词
graph neural networks; graph distillation; network symmetry; super nodes; feature optimization; 02.10.Ox; 02.40.Pc; 07.05.Mh; 11.30.-j;
D O I
10.1088/1674-1056/adbeda
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Graph neural networks (GNNs) have demonstrated excellent performance in graph representation learning. However, as the volume of graph data grows, issues related to cost and efficiency become increasingly prominent. Graph distillation methods address this challenge by extracting a smaller, reduced graph, ensuring that GNNs trained on both the original and reduced graphs show similar performance. Existing methods, however, primarily optimize the feature matrix of the reduced graph and rely on correlation information from GNNs, while neglecting the original graph's structure and redundant nodes. This often results in a loss of critical information within the reduced graph. To overcome this limitation, we propose a graph distillation method guided by network symmetry. Specifically, we identify symmetric nodes with equivalent neighborhood structures and merge them into "super nodes", thereby simplifying the network structure, reducing redundant parameter optimization and enhancing training efficiency. At the same time, instead of relying on the original node features, we employ gradient descent to match optimal features that align with the original features, thus improving downstream task performance. Theoretically, our method guarantees that the reduced graph retains the key information present in the original graph. Extensive experiments demonstrate that our approach achieves significant improvements in graph distillation, exhibiting strong generalization capability and outperforming existing graph reduction methods.
引用
收藏
页数:10
相关论文
共 39 条
[1]   R value measurements for e+e- annihilation at 2.60, 3.07 and 3.65 GeV [J].
Ablikim, M. ;
Bai, J. Z. ;
Bai, Y. ;
Ban, Y. ;
Cai, X. ;
Chen, H. F. ;
Chen, H. S. ;
Chen, H. X. ;
Chen, J. C. ;
Chen, Jin ;
Chen, X. D. ;
Chen, Y. B. ;
Chu, Y. P. ;
Dai, Y. S. ;
Deng, Z. Y. ;
Du, S. X. ;
Fang, J. ;
Fu, C. D. ;
Gao, C. S. ;
Gao, Y. N. ;
Gu, S. D. ;
Gu, Y. T. ;
Guo, Y. N. ;
Guo, Y. Q. ;
Guo, Z. J. ;
Harris, F. A. ;
He, K. L. ;
He, M. ;
Heng, Y. K. ;
Hu, H. M. ;
Hu, J. H. ;
Hu, T. ;
Huang, G. S. ;
Huang, X. T. ;
Huang, Y. P. ;
Ji, X. B. ;
Jiang, X. S. ;
Jiao, J. B. ;
Jin, D. P. ;
Jin, S. ;
Jin, Y. ;
Li, G. ;
Li, H. B. ;
Li, H. H. ;
Li, J. ;
Li, L. ;
Li, R. Y. ;
Li, W. D. ;
Li, W. G. ;
Li, X. L. .
PHYSICS LETTERS B, 2009, 677 (05) :239-245
[2]  
Abu-El-Haija S, 2019, Arxiv, DOI [arXiv:1905.00067, 10.48550/arXiv.1905.00067, DOI 10.48550/ARXIV.1905.00067]
[3]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159
[4]  
Cen Yukuo, 2023, WWW '23: Proceedings of the ACM Web Conference 2023, P747, DOI 10.1145/3543507.3583472
[5]   Identifying multiple influential spreaders in complex networks based on spectral graph theory [J].
Cui, Dong-Xu ;
He, Jia-Lin ;
Xiao, Zi-Fei ;
Ren, Wei-Ping .
CHINESE PHYSICS B, 2023, 32 (09)
[6]  
Danel T, 2021, COMM COM INF SC, V1333, P668, DOI 10.1007/978-3-030-63823-8_76
[7]  
Feng W., 2020, NeurIPS2020, DOI DOI 10.5555/3495724.3497577
[8]  
Gao X., 2024, arXiv, DOI [arXiv:2401.11720, 10.48550/arXiv.2401.11720, DOI 10.48550/ARXIV.2401.11720]
[9]  
Gilmer J, 2017, Arxiv, DOI [arXiv:1704.01212, 10.48550/arXiv.1704.01212, DOI 10.48550/ARXIV.1704.01212]
[10]  
Hassani K, 2020, Arxiv, DOI [arXiv:2006.05582, 10.48550/arXiv.2006.05582, DOI 10.48550/ARXIV.2006.05582]