Reconstruction methods for the phase-shifted Zernike wavefront sensor

被引:0
|
作者
Chambouleyron, Vincent [1 ]
Cisse, Mahawa [2 ]
Salama, Maissa [1 ]
Haffert, Sebastiaan [3 ,4 ]
Deo, Vincent [5 ]
Guthery, Charlotte [6 ]
Wallace, J. Kent [7 ]
Dillon, Daren [1 ]
Jensen-Clem, Rebecca [1 ]
Hinz, Phil [1 ]
Macintosh, Bruce [1 ]
机构
[1] Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA
[2] Aix Marseille Univ, LAM, CNES, CNRS, F-13013 Marseille, France
[3] Leiden Univ, Leiden Observ, Einsteinweg 55, Leiden, Netherlands
[4] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85719 USA
[5] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA
[6] WM Keck Observ, Waimea, HI USA
[7] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
来源
ADAPTIVE OPTICS SYSTEMS IX | 2024年 / 13097卷
关键词
adaptive optics; Zernike wavefront sensor; wavefront reconstruction;
D O I
10.1117/12.3020670
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Zernike wavefront sensor (ZWFS) stands out as one of the most sensitive optical systems for measuring the phase of an incoming wavefront, reaching photon efficiencies close to the fundamental limit. This quality, combined with the fact that it can easily measure phase discontinuities, has led to its widespread adoption in various wavefront control applications, both on the ground but also for future space-based instruments. Despite its advantages, the ZWFS faces a significant challenge due to its extremely limited dynamic range, making it particularly challenging for ground-based operations. To address this limitation, one approach is to use the ZWFS after a general adaptive optics (AO) system; however, even in this scenario, the dynamic range remains a concern. This paper investigates two optical configurations of the ZWFS: the conventional setup and its phase-shifted counterpart, which generates two distinct images of the telescope pupil. We assess the performance of various reconstruction techniques for both configurations, spanning from traditional linear reconstructors to gradient-descent-based methods. The evaluation encompasses simulations and experimental tests conducted on the Santa cruz Extreme Adaptive optics Lab (SEAL) bench at UCSC. Our findings demonstrate that certain innovative reconstruction techniques introduced in this study significantly enhance the dynamic range of the ZWFS, particularly when utilizing the phase-shifted version.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The Phase-Shifted Zernike wave-front sensor
    Cisse, Mahawa
    Chambouleyron, Vincent
    Fauvarque, Olivier
    Bond, Charlotte Z.
    Levraud, Nicolas
    Sauvage, Jean -Francois
    Neichel, Benoit
    Fusco, Thierry
    ADAPTIVE OPTICS SYSTEMS VIII, 2022, 12185
  • [2] Reconstruction of a decentered wavefront from several phase-shifted noisy interferograms
    Paez, G
    Scholl, MS
    INFRARED SPACEBORNE REMOTE SENSING V, 1997, 3122 : 253 - 259
  • [3] Zernike modal wavefront reconstruction error of Hartmann-Shack wavefront sensor
    Li, Xinyang
    Jiang, Wenhan
    Guangxue Xuebao/Acta Optica Sinica, 2002, 22 (10): : 1236 - 1240
  • [4] Phase-Shifting Zernike Interferometer Wavefront Sensor
    Wallace, J. Kent
    Rao, Shanti
    Jensen-Clem, Rebecca M.
    Serabyn, Gene
    OPTICAL MANUFACTURING AND TESTING IX, 2011, 8126
  • [5] Third harmonic phase-shifted Bragg grating sensor
    Yang, Qiaochu
    Hao, Yueying
    Long, Xueting
    Wu, Yang
    Yue, Xu
    Cai, Jiexuan
    Xu, Zhiyuan
    Ran, Yang
    Jin, Long
    Guan, Bai-Ou
    OPTICS LETTERS, 2022, 47 (08) : 1941 - 1944
  • [6] Phase imaging using shifted wavefront sensor images
    Zhang, Zhengyun
    Chen, Zhi
    Rehman, Shakil
    Barbastathis, George
    OPTICS LETTERS, 2014, 39 (21) : 6177 - 6180
  • [7] Reconstruction of a decentered wavefront using the method of direct integration of phase gradient starting from several phase-shifted interferograms requiring no phase unwrapping
    Paez, G
    Scholl, MS
    INFRARED SPACEBORNE REMOTE SENSING V, 1997, 3122 : 226 - 235
  • [8] Phase-shifted Fiber Bragg Grating Based Humidity Sensor
    Wang, Hao
    Guo, Honglei
    Xiao, Gaozhi
    Mrad, Nezih
    Kazemi, Alex
    Ban, Dayan
    PHOTONIC APPLICATIONS FOR AEROSPACE, COMMERCIAL, AND HARSH ENVIRONMENTS IV, 2013, 8720
  • [9] Phase-shifted interferometry without phase unwrapping:: reconstruction of a decentered wave front
    Páez, G
    Strojnik, M
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (03) : 475 - 480
  • [10] Characterization of the Phase-Shifting Zernike Wavefront Sensor for Telescope Applications
    Jensen-Clem, Rebecca
    Wallace, J. Kent
    Serabyn, Eugene
    2012 IEEE AEROSPACE CONFERENCE, 2012,