Analysis of Multidimensional Clinical and Physiological Data with Synolitical Graph Neural Networks

被引:0
作者
Krivonosov, Mikhail [1 ]
Nazarenko, Tatiana [2 ]
Ushakov, Vadim [3 ]
Vlasenko, Daniil [3 ]
Zakharov, Denis [3 ]
Chen, Shangbin [4 ]
Blyus, Oleg [5 ]
Zaikin, Alexey [2 ]
机构
[1] Lobachevsky Univ, Ctr Artificial Intelligence, Dept Appl Math, Lab Syst Med Ageing, Nizhnii Novgorod 603022, Russia
[2] UCL, Inst Womens Hlth, Dept Math, London WC1H 0AY, England
[3] Univ Higher Sch Econ, Inst Cognit Neurosci, 20 Myasnitskaya, Moscow 101000, Russia
[4] Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[5] Queen Mary Univ London, Wolfson Inst Populat Hlth, London EC1M 6BQ, England
关键词
networks; data analysis; graph neural networks;
D O I
10.3390/technologies13010013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper introduces a novel approach for classifying multidimensional physiological and clinical data using Synolitic Graph Neural Networks (SGNNs). SGNNs are particularly good for addressing the challenges posed by high-dimensional datasets, particularly in healthcare, where traditional machine learning and Artificial Intelligence methods often struggle to find global optima due to the "curse of dimensionality". To apply Geometric Deep Learning we propose a synolitic or ensemble graph representation of the data, a universal method that transforms any multidimensional dataset into a network, utilising only class labels from training data. The paper demonstrates the effectiveness of this approach through two classification tasks: synthetic and fMRI data from cognitive tasks. Convolutional Graph Neural Network architecture is then applied, and the results are compared with established machine learning algorithms. The findings highlight the robustness and interpretability of SGNNs in solving complex, high-dimensional classification problems.
引用
收藏
页数:14
相关论文
共 36 条
[1]  
Baldassarre F, 2019, Arxiv, DOI arXiv:1905.13686
[2]   DETECTION OF EPIGENOMIC NETWORK COMMUNITY ONCOMARKERS [J].
Bartlett, Thomas E. ;
Zaikin, Alexey .
ANNALS OF APPLIED STATISTICS, 2016, 10 (03) :1373-1396
[3]   Network Physiology: How Organ Systems Dynamically Interact [J].
Bartsch, Ronny P. ;
Liu, Kang K. L. ;
Bashan, Amir ;
Ivanov, Plamen Ch. .
PLOS ONE, 2015, 10 (11)
[4]   Network physiology reveals relations between network topology and physiological function [J].
Bashan, Amir ;
Bartsch, Ronny P. ;
Kantelhardt, Jan. W. ;
Havlin, Shlomo ;
Ivanov, Plamen Ch .
NATURE COMMUNICATIONS, 2012, 3
[5]  
Demichev Vadim, 2022, PLOS Digit Health, V1, pe0000007, DOI 10.1371/journal.pdig.0000007
[6]   A time-resolved proteomic and prognostic map of COVID-19 [J].
Demichev, Vadim ;
Tober-Lau, Pinkus ;
Lemke, Oliver ;
Nazarenko, Tatiana ;
Thibeault, Charlotte ;
Whitwell, Harry ;
Roehl, Annika ;
Freiwald, Anja ;
Szyrwiel, Lukasz ;
Ludwig, Daniela ;
Correia-Melo, Clara ;
Aulakh, Simran Kaur ;
Helbig, Elisa T. ;
Stubbemann, Paula ;
Lippert, Lena J. ;
Gruening, Nana-Maria ;
Blyuss, Oleg ;
Vernardis, Spyros ;
White, Matthew ;
Messner, Christoph B. ;
Joannidis, Michael ;
Sonnweber, Thomas ;
Klein, Sebastian J. ;
Pizzini, Alex ;
Wohlfarter, Yvonne ;
Sahanic, Sabina ;
Hilbe, Richard ;
Schaefer, Benedikt ;
Wagner, Sonja ;
Mittermaier, Mirja ;
Machleidt, Felix ;
Garcia, Carmen ;
Ruwwe-Gloesenkamp, Christoph ;
Lingscheid, Tilman ;
de Jarcy, Laure Bosquillon ;
Stegemann, Miriam S. ;
Pfeiffer, Moritz ;
Juergens, Linda ;
Denker, Sophy ;
Zickler, Daniel ;
Enghard, Philipp ;
Zelezniak, Aleksej ;
Campbell, Archie ;
Hayward, Caroline ;
Porteous, David J. ;
Marioni, Riccardo E. ;
Uhrig, Alexander ;
Mueller-Redetzky, Holger ;
Zoller, Heinz ;
Loeffler-Ragg, Judith .
CELL SYSTEMS, 2021, 12 (08) :780-+
[7]   VISUAL FEATURE EXTRACTION BY A MULTILAYERED NETWORK OF ANALOG THRESHOLD ELEMENTS [J].
FUKUSHIMA, K .
IEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICS, 1969, SSC5 (04) :322-+
[8]  
Gilmer J, 2017, PR MACH LEARN RES, V70
[9]   Dynamic and thermodynamic models of adaptation [J].
Gorban, A. N. ;
Tyukina, T. A. ;
Pokidysheva, L., I ;
Smirnova, E., V .
PHYSICS OF LIFE REVIEWS, 2021, 37 :17-64
[10]  
Grattarola D., 2021, arXiv, DOI [10.1109/TNNLS.2022.3190922, DOI 10.1109/TNNLS.2022.3190922]