What constitutes sustainable agriculture for different audiences in Germany? A comparative analysis of large-scale text data

被引:1
作者
Bartkowski, Bartosz [1 ,2 ]
Baaken, Marieke Cornelia [3 ,4 ]
Nagpal, Mansi [1 ]
Sodoge, Jan [5 ,6 ]
de Brito, Mariana Madruga [5 ]
机构
[1] UFZ Helmholtz Ctr Environm Res, Dept Econ, Leipzig, Germany
[2] Martin Luther Univ Halle Wittenberg, Dept Econ, Halle, Germany
[3] Osnabruck Univ, Inst Environm Syst Res, Dept Environm Econ, Osnabruck, Germany
[4] Osnabruck Univ, Fac Econ & Business Adm, Osnabruck, Germany
[5] UFZ Helmholtz Ctr Environm Res, Dept Urban & Environm Sociol, Leipzig, Germany
[6] Univ Potsdam, Inst Environm Sci & Geog, Potsdam, Germany
关键词
agriculture; farming; natural language processing; sustainability; topic modelling; CLIMATE-CHANGE; BIODIVERSITY; ENVIRONMENT;
D O I
10.1002/pan3.70003
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Agriculture contributes in several ways to achieving sustainability objectives. However, there is no agreement among different societal groups, such as farmers, consumers and scientists, on what constitutes 'sustainable agriculture'. These differences affect how the impacts of agricultural production on sustainability objectives is perceived, which solutions are considered and implemented. In this paper, we investigate the topics discussed under the heading 'sustainable agriculture' in German newspapers and agricultural magazines. To this end, we apply topic modelling to extract topics discussed in these two large-scale text corpora. We complement these with scientific articles as a contrast case. We run separate topic models for each corpus and use the identified topics to compare the patterns qualitatively. Results reveal heterogeneity in the topics across the three corpora with limited overlaps restricted to topics such as agricultural policy. This supports the assumption that farmers and the broader society in Germany have very different perceptions of sustainable agriculture. A surprising result is the absence of topics related to climate change from the agricultural magazine corpus. These disparities may create challenges for designing and implementing democratically legitimized policies to promote sustainable agriculture.Read the free Plain Language Summary for this article on the Journal blog. Die Landwirtschaft tr & auml;gt in mehrfacher Hinsicht zur Erreichung von Nachhaltigkeitszielen bei. Es besteht jedoch keine Einigkeit zwischen verschiedenen gesellschaftlichen Gruppen wie Landwirt:innen, Verbraucher:innen und Wissenschaftler:innen dar & uuml;ber, was eine ,,nachhaltige Landwirtschaft "ausmacht. Diese Unterschiede wirken sich darauf aus, wie die Auswirkungen der landwirtschaftlichen Produktion auf Nachhaltigkeitsziele wahrgenommen werden, welche L & ouml;sungen ber & uuml;cksichtigt und umgesetzt werden. In diesem Artikel untersuchen wir die Themen, die unter der & Uuml;berschrift ,,nachhaltige Landwirtschaft "in deutschen Zeitungen und landwirtschaftlichen Zeitschriften diskutiert werden. Zu diesem Zweck wenden wir Topic Modelling an, um Themen zu extrahieren, die in diesen beiden gro ss en Textkorpora diskutiert werden. Wir erg & auml;nzen diese durch wissenschaftliche Artikel als Kontrastfall. Wir lassen f & uuml;r jeden Korpus separate Topic-Modelle laufen und verwenden die identifizierten Themen, um Muster qualitativ zu vergleichen. Die Ergebnisse zeigen eine Heterogenit & auml;t von Themen in den drei Korpora mit nur begrenzten & Uuml;berschneidungen, die sich auf Themen wie die Agrarpolitik beschr & auml;nken. Dies unterst & uuml;tzt die Annahme, dass Landwirt:innen und die breite Gesellschaft in Deutschland sehr unterschiedliche Vorstellungen von nachhaltiger Landwirtschaft haben. Ein & uuml;berraschendes Ergebnis ist das Fehlen von Themen im Zusammenhang mit dem Klimawandel im Korpus der landwirtschaftlichen Zeitschriften. Diese Differenzen k & ouml;nnen eine Herausforderung f & uuml;r die Gestaltung und Umsetzung demokratisch legitimierter Ma ss nahmen zur F & ouml;rderung einer nachhaltigen Landwirtschaft darstellen. A agricultura contribui de diversas formas para os objetivos de sustentabilidade. No entanto, n & atilde;o h & aacute; consenso entre diferentes grupos da sociedade, como agricultores, consumidores e cientistas, sobre o que caracteriza a "agricultura sustent & aacute;vel". Essas diverg & ecirc;ncias influenciam a percep & ccedil;& atilde;o dos impactos da produ & ccedil;& atilde;o agr & iacute;cola e determinam quais solu & ccedil;& otilde;es s & atilde;o consideradas e implementadas para alcan & ccedil;ar a sustentabilidade. Neste artigo, investigamos os temas debatidos sob o t & iacute;tulo "agricultura sustent & aacute;vel" em jornais alem & atilde;es e revistas agr & iacute;colas. Para isso, aplicamos modelagem de t & oacute;picos para identificar os principais assuntos abordados nesses dois grandes corpora textuais. Al & eacute;m disso, utilizamos artigos cient & iacute;ficos como refer & ecirc;ncia de contraste, elaborando modelos de t & oacute;picos separados para cada corpus e comparando qualitativamente os padr & otilde;es identificados. Os resultados indicam uma consider & aacute;vel heterogeneidade entre os tr & ecirc;s corpora, com poucas sobreposi & ccedil;& otilde;es, limitadas principalmente a temas como pol & iacute;tica agr & iacute;cola. Isso refor & ccedil;a a hip & oacute;tese de que agricultores e a sociedade em geral na Alemanha possuem percep & ccedil;& otilde;es bastante distintas sobre agricultura sustent & aacute;vel. Um resultado inesperado foi a aus & ecirc;ncia de temas relacionados & agrave;s mudan & ccedil;as clim & aacute;ticas no corpus das revistas agr & iacute;colas. Essas discrep & acirc;ncias podem representar um desafio para a formula & ccedil;& atilde;o e implementa & ccedil;& atilde;o de pol & iacute;ticas democraticamente legitimadas voltadas & agrave; promo & ccedil;& atilde;o da agricultura sustent & aacute;vel.
引用
收藏
页码:715 / 730
页数:16
相关论文
共 23 条
  • [1] Large-scale Analysis of Free-Text Data for Mental Health Surveillance with Topic Modelling
    Gu, Yang
    Leroy, Gondy
    AMCIS 2020 PROCEEDINGS, 2020,
  • [2] Agroecology for a Sustainable Agriculture and Food System: From Local Solutions to Large-Scale Adoption
    Ewert, Frank
    Baatz, Roland
    Finger, Robert
    ANNUAL REVIEW OF RESOURCE ECONOMICS, 2023, 15 : 351 - 381
  • [3] A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation
    Son, N. T.
    Chen, C. F.
    Chen, C. R.
    Minh, V. Q.
    Trung, N. H.
    AGRICULTURAL AND FOREST METEOROLOGY, 2014, 197 : 52 - 64
  • [4] Large-scale, seasonal flood risk analysis for agricultural crops in Germany
    Stefan Klaus
    Heidi Kreibich
    Bruno Merz
    Bernd Kuhlmann
    Kai Schröter
    Environmental Earth Sciences, 2016, 75
  • [5] Large-scale, seasonal flood risk analysis for agricultural crops in Germany
    Klaus, Stefan
    Kreibich, Heidi
    Merz, Bruno
    Kuhlmann, Bernd
    Schroeter, Kai
    ENVIRONMENTAL EARTH SCIENCES, 2016, 75 (18)
  • [6] A comparative study of driving performance in metropolitan regions using large-scale vehicle trajectory data: Implications for sustainable cities
    Liu, Jun
    Khattak, Asad
    Wang, Xin
    INTERNATIONAL JOURNAL OF SUSTAINABLE TRANSPORTATION, 2017, 11 (03) : 170 - 185
  • [7] The Analysis of Large-Scale Climate Data: Jordan Case Study
    Jararweh, Yaser
    Alsmadi, Izzat
    Al-Ayyoub, Mahmoud
    Jenerette, Darrel
    2014 IEEE/ACS 11TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2014, : 288 - 294
  • [8] An experiential account of a large-scale interdisciplinary data analysis of public engagement
    Goni, Julian Inaki
    Fuentes, Claudio
    Paz Raveau, Maria
    AI & SOCIETY, 2023, 38 (02) : 581 - 593
  • [9] Probabilistic unsupervised classification for large-scale analysis of spectral imaging data
    Paradis, Emmanuel
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 107
  • [10] An experiential account of a large-scale interdisciplinary data analysis of public engagement
    Julian “Iñaki” Goñi
    Claudio Fuentes
    Maria Paz Raveau
    AI & SOCIETY, 2023, 38 : 581 - 593