Identifying Distinct Developmental Patterns of Brain Complexity in Autism: A Cross-Sectional Cohort Analysis Using the Autism Brain Imaging Data Exchange

被引:0
作者
Chi, I-Jou [1 ]
Tsai, Shih-Jen [1 ,2 ]
Chen, Chun-Houh [3 ]
Yang, Albert C. [1 ,4 ,5 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Inst Brain Sci, Taipei, Taiwan
[2] Taipei Vet Gen Hosp, Dept Psychiat, Taipei, Taiwan
[3] Acad Sinica, Inst Stat Sci, Taipei, Taiwan
[4] Taipei Vet Gen Hosp, Dept Med Res, Taipei, Taiwan
[5] Natl Yang Ming Chiao Tung Univ, Digital Med & Smart Healthcare Res Ctr, Taipei, Taiwan
关键词
autism spectrum disorder; brain complexity; developmental trajectories; functional magnetic resonance imaging; sample entropy; DEFAULT MODE NETWORK; SPECTRUM DISORDER; MULTISCALE ENTROPY; CHILDREN; SCHIZOPHRENIA; MATURATION; SIGNAL; SHIFT;
D O I
10.1111/pcn.13780
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
AimAutistic traits exhibit neurodiversity with varying behaviors across developmental stages. Brain complexity theory, illustrating the dynamics of neural activity, may elucidate the evolution of autistic traits over time. Our study explored the patterns of brain complexity in autistic individuals from childhood to adulthood.MethodsWe analyzed functional magnetic resonance imaging data from 1087 autistic participants and neurotypical controls aged 6 to 30 years within the ABIDE I (Autism Brain Imaging Data Exchange) data set. Sample entropy was calculated to measure brain complexity among 90 brain regions, utilizing an automated anatomical labeling template for voxel parcellation. Participants were grouped using sliding age windows with partial overlaps. We assessed the average brain complexity of the entire brain and brain regions for both groups across age categories. Cluster analysis was conducted using generalized association plots to identify brain regions with similar developmental complexity trajectories. Finally, the relationship between brain region complexity and autistic traits was examined.ResultsAutistic individuals may tend toward higher whole-brain complexity during adolescence and lower complexity during childhood and adulthood, indicating possible distinct developmental trajectories. However, these results do not remain after Bonferroni correction. Two clusters of brain regions were identified, each with unique patterns of complexity changes over time. Correlations between brain region complexity, age, and autistic traits were also identified.ConclusionThe study revealed brain complexity trajectories in autistic individuals, providing insight into the neurodiversity of autism and suggesting that age-related changes in brain complexity could be a potential neurodevelopmental marker for the dynamic nature of autism.
引用
收藏
页码:98 / 107
页数:10
相关论文
共 69 条
[11]   Shifting Developmental Trajectories During Critical Periods of Brain Formation [J].
Dehorter, Nathalie ;
Del Pino, Isabel .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2020, 14
[12]   Approximate Entropy and Sample Entropy: A Comprehensive Tutorial [J].
Delgado-Bonal, Alfonso ;
Marshak, Alexander .
ENTROPY, 2019, 21 (06)
[13]   Age-related parietal GABA alterations in children with autism spectrum disorder [J].
DeMayo, Marilena M. ;
Harris, Ashley D. ;
Song, Yun Ju C. ;
Pokorski, Izabella ;
Thapa, Rinku ;
Patel, Shrujna ;
Ambarchi, Zahava ;
Thomas, Emma E. ;
Hickie, Ian B. ;
Guastella, Adam J. .
AUTISM RESEARCH, 2021, 14 (05) :859-872
[14]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[15]   BOLD signal variability and complexity in children and adolescents with and without autism spectrum disorder [J].
Easson, Amanda K. ;
McIntos, Anthony R. .
DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2019, 36
[16]   Improvements on cross-validation: The .632+ bootstrap method [J].
Efron, B ;
Tibshirani, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) :548-560
[17]  
EHLERS CL, 1995, ARCH GEN PSYCHIAT, V52, P960
[18]   Atypical Brain Asymmetry in Autism-A Candidate for Clinically Meaningful Stratification [J].
Floris, Dorothea L. ;
Wolfers, Thomas ;
Zabihi, Mariam ;
Holz, Nathalie E. ;
Zwiers, Marcel P. ;
Charman, Tony ;
Tillmann, Julian ;
Ecker, Christine ;
Dell'Acqua, Flavio ;
Banaschewski, Tobias ;
Moessnang, Carolin ;
Baron-Cohen, Simon ;
Holt, Rosemary ;
Durston, Sarah ;
Loth, Eva ;
Murphy, Declan G. M. ;
Marquand, Andre ;
Buitelaar, Jan K. ;
Beckmann, Christian F. .
BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2021, 6 (08) :802-812
[19]   GABA estimation in the brains of children on the autism spectrum: Measurement precision and regional cortical variation [J].
Gaetz, W. ;
Bloy, L. ;
Wang, D. J. ;
Port, R. G. ;
Blaskey, L. ;
Levy, S. E. ;
Roberts, T. P. L. .
NEUROIMAGE, 2014, 86 :1-9
[20]   Common Mechanisms of Excitatory and Inhibitory Imbalance in Schizophrenia and Autism Spectrum Disorders [J].
Gao, R. ;
Penzes, P. .
CURRENT MOLECULAR MEDICINE, 2015, 15 (02) :146-167