Monte-Carlo simulations of a neutron source based on a linear electron accelerator

被引:0
|
作者
Wasilewski, Adam [1 ]
Wronka, Slawomir [1 ]
机构
[1] Natl Ctr Nucl Res, Andrzeja Soltana St 7, PL-05400 Otwock, Poland
关键词
Electron linear accelerator; FLUKA; Monte-Carlo calculations; Neutron generation; X-ray converter; ENERGY; OPTIMIZATION; TUNGSTEN;
D O I
10.2478/nuka-2025-0001
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Neutron beams are employed in a multitude of applications, including neutron activation analysis, neutron radiography and tomography, nuclear waste assays, reactor start-up sources, studies of material response, geological analysis, calibration standards and cancer therapy. The global demand for access to neutron beams is increasing, necessitating the development of relatively simple, efficient and easy-to-use neutron sources to address the more complex challenges of scientific research and industrial application. One relatively readily available method is to use a linear electron accelerator to produce beams of fast neutrons. The neutron generator, comprising of an electron linear accelerator and a tungsten X-ray converter, is capable of producing a maximum neutron flux of 1.53<middle dot>1010 n/s to 1.45<middle dot>1013 n/s at electron energies of 10-50 MeV, with an average electron beam current of 120 mu A, corresponding to an intensity of 7.5<middle dot>1014 e/s. The results of the neutron generator modelling conducted with the FLUKA Monte-Carlo code are presented in this article for an equivalent incident beam power of 1.2-6.0 kW. The optimal tungsten converter thickness is proposed as a means of achieving the maximum neutron flux in all directions.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 50 条
  • [1] Monte-Carlo simulations of a neutron source generated with electron linear accelerator
    Wasilewski, Adam
    Wronka, Slawomir
    NUKLEONIKA, 2006, 51 (03) : 169 - 173
  • [2] Monte Carlo simulation-based design of an electron-linear accelerator-based neutron source for boron neutron capture therapy
    Hiraga, F.
    APPLIED RADIATION AND ISOTOPES, 2020, 162
  • [3] MONTE-CARLO SIMULATIONS OF THE ELECTRON GLASS
    XUE, WG
    LEE, PA
    PHYSICAL REVIEW B, 1988, 38 (13): : 9093 - 9098
  • [4] The necessity of a divergent initial electron beam in the Monte-Carlo model of a linear accelerator
    De Smedt, B
    Reynaert, N
    Coghe, M
    Paelinck, L
    Van Duysse, B
    De Wagter, C
    De Neve, W
    Thierens, H
    RADIOTHERAPY AND ONCOLOGY, 2003, 68 : S42 - S42
  • [5] Monte-Carlo simulations of small angle neutron scattering instruments at European spallation source
    Lieutenant, K
    Gutberlet, T
    Wiedenmann, A
    Mezei, F
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 553 (03): : 592 - 603
  • [6] MONTE-CARLO SIMULATION OF A GAAS ELECTRON SOURCE
    YANG, B
    CIULLO, G
    GUIDI, V
    TECCHIO, L
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1992, 25 (12) : 1834 - 1837
  • [7] Monte-Carlo simulations
    Giersz, M
    DYNAMICAL EVOLUTION OF STAR CLUSTERS - CONFRONTATION OF THEORY AND OBSERVATIONS, 1996, (174): : 101 - 110
  • [8] MONTE-CARLO CALCULATIONS OF A HYDROGEN COLD NEUTRON SOURCE
    KALLI, H
    ACTA POLYTECHNICA SCANDINAVICA-PHYSICS INCLUDING NUCLEONICS SERIES, 1972, (88): : 1 - 28
  • [9] LINEAR-FILTERING ALGORITHMS FOR MONTE-CARLO SIMULATIONS
    AMIRAZIZI, S
    DANIELL, GJ
    COMPUTER PHYSICS COMMUNICATIONS, 1992, 67 (03) : 443 - 452
  • [10] STEREO PRESENTATION OF MONTE-CARLO ELECTRON TRAJECTORY SIMULATIONS
    BRIGHT, DS
    MYKLEBUST, RL
    NEWBURY, DE
    JOURNAL OF MICROSCOPY-OXFORD, 1984, 136 (OCT): : 113 - 120