CSTN: A cross-region crop mapping method integrating self-training and contrastive domain adaptation

被引:0
|
作者
Peng, Shuwen [1 ]
Zhang, Liqiang [1 ]
Xie, Rongchang [2 ]
Qu, Ying [1 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[2] Peking Univ, Ctr Data Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Crop mapping; Satellite imagery time series; Pseudo-labels; Contrastive Domain Adaptation; Model interpretability; TIME-SERIES; PHENOLOGY; ATTENTION; FRAMEWORK;
D O I
10.1016/j.jag.2025.104379
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Crop mapping is essential for agricultural management and food production monitoring, but challenges like limited crop labels and poor model generalization significantly hinder large-scale crop mapping. Here, we introduce a novel Contrastive Self-Training Network (CSTN), integrating a self-training strategy and contrastive domain adaptation (CDA) for cross-region crop mapping. CSTN uses pseudo-labels in the target region generated by the self-training strategy to assist supervised learning, and aligns features across regions using class-aware prototypes. Qualitative and quantitative evaluations demonstrate that CSTN significantly outperforms state-ofthe-art methods with a 12.29 % increase in average F1-score, particularly in maize identification. Moreover, CSTN also enables early-season crop classification for pre-harvest decision-making applications. The interpretability of the model is demonstrated through an in-depth analysis of feature map visualizations, attention map visualizations, and the effectiveness of the modules. This study provides a robust method for enhancing largescale crop mapping and facilitating more accurate and timely agricultural practices.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Self-Training with Contrastive Learning for Adversarial Domain Adaptation
    Zhang, Xingyi (xyzhanghust@gmail.com), 1600, Institute of Electrical and Electronics Engineers Inc.
  • [2] Addressing the Overfitting in Partial Domain Adaptation With Self-Training and Contrastive Learning
    He, Chunmei
    Li, Xiuguang
    Xia, Yue
    Tang, Jing
    Yang, Jie
    Ye, Zhengchun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1532 - 1545
  • [3] Contrastive Learning and Self-Training for Unsupervised Domain Adaptation in Semantic Segmentation
    Marsden, Robert A.
    Bartler, Alexander
    Doebler, Mario
    Yang, Bin
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [4] Cycle Self-Training for Domain Adaptation
    Liu, Hong
    Wang, Jianmin
    Long, Mingsheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [5] Understanding Self-Training for Gradual Domain Adaptation
    Kumar, Ananya
    Ma, Tengyu
    Liang, Percy
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [6] Unsupervised domain adaptation with self-training for weed segmentation
    Huang, Yingchao
    Hussein, Amina E.
    Wang, Xin
    Bais, Abdul
    Yao, Shanshan
    Wilder, Tanis
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2025, 25
  • [7] Unsupervised Domain Adaptation with Adversarial Self-Training for Crop Classification Using Remote Sensing Images
    Kwak, Geun-Ho
    Park, No-Wook
    REMOTE SENSING, 2022, 14 (18)
  • [8] Adversarial Domain Adaptation Enhanced via Self-training
    Altinel, Fazil
    Akkaya, Ibrahim Batuhan
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [9] Unsupervised Domain Adaptation with Multiple Domain Discriminators and Adaptive Self-Training
    Spadotto, Teo
    Toldo, Marco
    Michieli, Umberto
    Zanuttigh, Pietro
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2845 - 2852
  • [10] Unsupervised domain adaptation for semantic segmentation via cross-region alignment
    Wang, Zhijie
    Liu, Xing
    Suganuma, Masanori
    Okatani, Takayuki
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 234