Comparative Salt-Stress Responses in Salt-Tolerant (Vikinga) and Salt-Sensitive (Regalona) Quinoa Varieties. Physiological, Anatomical and Biochemical Perspectives

被引:0
|
作者
Serrat, Xavier [1 ]
Quello, Antony [1 ]
Manikan, Brigen [1 ]
Lino, Gladys [1 ,2 ]
Nogues, Salvador [1 ]
机构
[1] Univ Barcelona, Dept Biol Evolut Ecol Ciencies Ambientals i, Barcelona 08028, Spain
[2] Univ Cient Sur, Fac Ciencias Ambientales, Lima 15067, Peru
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 12期
关键词
quinoa; abiotic stress; halophyte; salinity; SALINITY TOLERANCE; OSMOTIC RELATIONS; GROWTH; TRANSPORT; PLANTS; WILLD; PHOTOSYNTHESIS; MECHANISMS; NA+; ACCUMULATION;
D O I
10.3390/agronomy14123003
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Soil salinization is an important stress factor that limits plant growth and yield. Increased salinization is projected to affect more than 50% of all arable land by 2050. In addition, the growing demand for food, together with the increase in the world population, forces the need to seek salt-tolerant crops. Quinoa (Chenopodium quinoa Willd.) is an Andean crop of high importance, due to its nutritional characteristics and high tolerance to different abiotic stresses. The aim of this work is to determine the physiological, anatomical, and biochemical salt-tolerance mechanisms of a salt-tolerant (Vikinga) and a salt-sensitive (Regalona) quinoa variety. Plants were subjected to salinity stress for 15 days, starting at 100 mM NaCl until progressively reaching 400 mM NaCl. Physiological, anatomical, and biochemical parameters including growth, chlorophyll content, quantum yield of PSII (phi PSII), gas exchange, stomatal density, size, and lipid peroxidation (via malondialdehyde, MDA) were measured. Results show that chlorophyll content, phi PSII, and MDA were not significantly reduced under saline stress in both varieties. The most stress-affected process was the CO2 net assimilation, with an up to 60% reduction in both varieties, yet Vikinga produced higher dry weight than Regalona due to the number of leaves. The stomatal densities increased under salinity for both varieties, with Regalona the one showing higher values. The averaged stomatal size was also reduced under salinity in both varieties. The capacity of Vikinga to generate higher dry weight is a function of the capacity to generate greater amounts of leaves and roots in any condition. The stomatal control is a key mechanism in quinoa's salinity tolerance, acquiring higher densities with smaller sizes for efficient management of water loss and carbon assimilation. These findings highlight the potential of Vikinga for cultivation in temperate salinized environments during winter, such as Deltas and lowlands where rice is grown during summer.
引用
收藏
页数:15
相关论文
共 50 条
  • [22] Dissecting the osmotic and oxidative stress responses in salt-tolerant and salt-sensitive wheat genotypes under saline conditions
    Ibrahimova, Ulkar
    Talai, Javanshir
    Hasan, Md. mahadi
    Huseynova, Irada
    Raja, Vaseem
    Rastogi, Anshu
    Ghaffari, Hamideh
    Zivcak, Marek
    Yang, Xinghong
    Brestic, Marian
    PLANT SOIL AND ENVIRONMENT, 2025, 71 (01) : 36 - 47
  • [23] Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance
    Mingquan Wang
    Yufeng Wang
    Yifei Zhang
    Chunxia Li
    Shichen Gong
    Shuqin Yan
    Guoliang Li
    Guanghui Hu
    Honglei Ren
    Jianfei Yang
    Tao Yu
    Kejun Yang
    Genes & Genomics, 2019, 41 : 781 - 801
  • [24] Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance
    Wang, Mingquan
    Wang, Yufeng
    Zhang, Yifei
    Li, Chunxia
    Gong, Shichen
    Yan, Shuqin
    Li, Guoliang
    Hu, Guanghui
    Ren, Honglei
    Yang, Jianfei
    Yu, Tao
    Yang, Kejun
    GENES & GENOMICS, 2019, 41 (07) : 781 - 801
  • [25] Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance
    Chen, Fenqi
    Fang, Peng
    Peng, Yunling
    Zeng, Wenjing
    Zhao, Xiaoqiang
    Ding, Yongfu
    Zhuang, Zelong
    Gao, Qiaohong
    Ren, Bin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (19)
  • [26] The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars
    Walitang, Denver I.
    Kim, Chang-Gi
    Kim, Kiyoon
    Kang, Yeongyeong
    Kim, Young Kee
    Sa, Tongmin
    BMC PLANT BIOLOGY, 2018, 18
  • [27] The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars
    Denver I. Walitang
    Chang-Gi Kim
    Kiyoon Kim
    Yeongyeong Kang
    Young Kee Kim
    Tongmin Sa
    BMC Plant Biology, 18
  • [28] QUANTITATIVE ION DISTRIBUTION WITHIN ROOT-CELLS OF SALT-SENSITIVE AND SALT-TOLERANT MAIZE VARIETIES
    HAJIBAGHERI, MA
    HARVEY, DMR
    FLOWERS, TJ
    NEW PHYTOLOGIST, 1987, 105 (03) : 367 - 379
  • [29] Comparative Transcriptomic Profiling of a Salt-Tolerant Wild Tomato Species and a Salt-Sensitive Tomato Cultivar
    Sun, Wei
    Xu, Xinna
    Zhu, Huishan
    Liu, Aihua
    Liu, Lei
    Li, Junming
    Hua, Xuejun
    PLANT AND CELL PHYSIOLOGY, 2010, 51 (06) : 997 - 1006
  • [30] Long-term culture modifies the salt responses of callus lines of salt-tolerant and salt-sensitive tomato species
    Rus, AM
    Rios, S
    Olmos, E
    Santa-Cruz, A
    Bolarin, MC
    JOURNAL OF PLANT PHYSIOLOGY, 2000, 157 (04) : 413 - 420