An efficient hierarchical Bayesian framework for multiscale material modeling

被引:0
|
作者
Pyrialakos, Stefanos [1 ]
Kalogeris, Ioannis [1 ]
Papadopoulos, Vissarion [1 ]
机构
[1] Natl Tech Univ Athens, MGrp Engn Simulat Lab, Inst Struct Anal & Antiseism Res, Zografou Campus 9 Iroon Polytech Str, Zografos 15780, Greece
基金
欧盟地平线“2020”;
关键词
Parameter identification; Hierarchical Bayesian method; Multiscale material modeling; Neural networks; CNT-reinforced concrete; MECHANICAL-PROPERTIES; HOMOGENIZATION; MIXTURES; CONCRETE; STRESS; RULE;
D O I
10.1016/j.compstruct.2024.118570
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper introduces a novel approach to infer the material properties of multiscale material systems through a variety of experimental scenarios. We utilize the hierarchical Bayesian paradigm which enables us to integrate multiple experimental data at different length scales and/or different material compositions, in a systematic way. Specifically, a probabilistic model is constructed which implements the Transitional Markov Chain Monte Carlo method to extract samples from the posterior distributions of both the multiscale model parameters and the hierarchical hyperparameters. The posterior distribution of the hyperparameters encapsulates the information from all the different experiments and it is utilized to derive an informed set of physical parameters, which can be used for making predictions in future material models. Feed forward neural networks play a crucial role in mitigating the computational effort of implementing the hierarchical Bayesian analysis on top of multiscale nonlinear computational homogenization analyses. Their purpose is to learn and accurately emulate the nonlinear constitutive law across multiple length scales. The proposed methodology is demonstrated on a case study of carbon nanotube (CNT) reinforced cementitious material configurations through the investigation of the CNT interfacial mechanical behavior. The hierarchical Bayesian framework is applied on a set of measurements gathered from independent literature experiments performed on dissimilar material compositions on the macroscopic structural scale.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Bayesian analysis of hierarchical random fields for material modeling
    Geyer, Sebastian
    Papaioannou, Iason
    Straub, Daniel
    PROBABILISTIC ENGINEERING MECHANICS, 2021, 66
  • [2] A Bayesian hierarchical framework for spatial modeling of fMRI data
    Bowman, F. DuBois
    Caffo, Brian
    Bassett, Susan Spear
    Kilts, Clinton
    NEUROIMAGE, 2008, 39 (01) : 146 - 156
  • [3] Digital material: A framework for multiscale modeling of defects in solids
    Myers, CR
    Arwade, SR
    Iesulauro, E
    Wawrzynek, PA
    Grigoriu, M
    Ingraffea, AR
    Dawson, PR
    Miller, MP
    Sethna, JP
    MULTISCALE MODELLING OF MATERIALS, 1999, 538 : 509 - 514
  • [4] A second gradient theoretical framework for hierarchical multiscale modeling of materials
    Luscher, Darby J.
    McDowell, David L.
    Bronkhorst, Curt A.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2010, 26 (08) : 1248 - 1275
  • [5] Efficient bayesian hierarchical user modeling for recommendation system
    Zhang, Yi
    Koren, Jonathan
    Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'07, 2007, : 47 - 54
  • [6] A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data
    Chen, Shuo
    Bowman, F. DuBois
    Mayberg, Helen S.
    BIOMETRICS, 2016, 72 (02) : 596 - 605
  • [7] Nonlinear model updating through a hierarchical Bayesian modeling framework
    Jia, Xinyu
    Sedehi, Omid
    Papadimitriou, Costas
    Katafygiotis, Lambros S.
    Moaveni, Babak
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 392
  • [8] A Bayesian multiscale framework for SPECT
    Nowak, RD
    Kolaczyk, E
    Lalush, D
    Tsui, B
    1999 IEEE NUCLEAR SCIENCE SYMPOSIUM - CONFERENCE RECORD, VOLS 1-3, 1999, : 1147 - 1151
  • [9] A heterogeneous multiscale modeling framework for hierarchical systems of partial differential equations
    Masud, Arif
    Scovazzi, Guglielmo
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (1-3) : 28 - 42
  • [10] A hierarchical multiscale framework for problems with multiscale source terms
    Masud, Arif
    Franca, Leopoldo P.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (33-40) : 2692 - 2700