GViT-RSNet: A retinal vessel segmentation network using graph convolutional attention and multi-scale vision transformer

被引:1
作者
Li, Jiayao [1 ]
Cheng, Qianxiang [1 ]
Wu, Chenxi [2 ]
机构
[1] Macau Univ Sci & Technol, Fac Innovat Engn, Sch Comp Sci & Engn, Taipa, Macao, Peoples R China
[2] Macau Univ Sci & Technol, Univ Int Coll, Taipa, Macao, Peoples R China
关键词
Retinal vessel segmentation; Graph convolutional attention; Medical image analysing; CLASSIFICATION; IMAGES;
D O I
10.1016/j.patrec.2025.01.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Addressing the challenge of segmenting fine blood vessels in retinal images, this paper proposes a Retinal vessel Segmentation Network based on Graph convolutional attention and multi-scale hierarchical Vision Transformer (GViT-RSNet). The network comprises an encoder, a decoder, and an aggregation module. Within GViT-RSNet, an efficient Up-Convolution Module (UCM) upscales the feature maps, a Graph Convolutional Attention (GCA) robustly enhances the feature maps, and a Gated Fusion Module (GFM) generates the refined segmentation outputs. We conducted fair comparison experiments on three publicly available retinal segmentation datasets, and our proposed model outperforms several other state-of-the-art (SOTA) methods. GViT-RSNet consistently achieves superior performance for the mAcc metric across all three datasets, outperforming other methods by at least 0.37%, 0.07%, and 0.43%, respectively. A series of experiments demonstrated the efficiency, robustness, and applicability of GViT-RSNet. The architecture and components of our proposed model are versatile and can be applied to other downstream medical image analysis and semantic segmentation tasks.
引用
收藏
页码:182 / 187
页数:6
相关论文
共 30 条
[1]   Segmentation of MRI tumors and pelvic anatomy via cGAN-synthesized data and attention-enhanced U-Net [J].
Ali, Mudassar ;
Hu, Haoji ;
Wu, Tong ;
Mansoor, Maryam ;
Luo, Qiong ;
Zheng, Weizeng ;
Jin, Neng .
PATTERN RECOGNITION LETTERS, 2025, 187 :100-106
[2]   Advances in ECG and PCG-based cardiovascular disease classification: a review of deep learning and machine learning methods [J].
Ameen, Asmaa ;
Fattoh, Ibrahim Eldesouky ;
Abd El-Hafeez, Tarek ;
Ahmed, Kareem .
JOURNAL OF BIG DATA, 2024, 11 (01)
[3]   Robust Vessel Segmentation in Fundus Images [J].
Budai, A. ;
Bock, R. ;
Maier, A. ;
Hornegger, J. ;
Michelson, G. .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2013, 2013 (2013)
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]  
Chen Y., 2024, International Journal of Computer Science and Information Technology, V2, P45, DOI [10.62051/ijcsit.v2n1.06, DOI 10.62051/IJCSIT.V2N1.06]
[6]  
Cheng B, 2021, ADV NEUR IN, V34
[7]   Masked-attention Mask Transformer for Universal Image Segmentation [J].
Cheng, Bowen ;
Misra, Ishan ;
Schwing, Alexander G. ;
Kirillov, Alexander ;
Girdhar, Rohit .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1280-1289
[8]  
Contributors M., 2020, MMSegmentation: openmmlab semantic segmentation toolbox and benchmark
[9]   Semantic segmentation of microbial alterations based on SegFormer [J].
Elmessery, Wael M. ;
Maklakov, Danil V. ;
El-Messery, Tamer M. ;
Baranenko, Denis A. ;
Gutierrez, Joaquin ;
Shams, Mahmoud Y. ;
El-Hafeez, Tarek Abd ;
Elsayed, Salah ;
Alhag, Sadeq K. ;
Moghanm, Farahat S. ;
Mulyukin, Maksim A. ;
Petrova, Yuliya Yu. ;
Elwakeel, Abdallah E. .
FRONTIERS IN PLANT SCIENCE, 2024, 15
[10]   Rethinking BiSeNet For Real-time Semantic Segmentation [J].
Fan, Mingyuan ;
Lai, Shenqi ;
Huang, Junshi ;
Wei, Xiaoming ;
Chai, Zhenhua ;
Luo, Junfeng ;
Wei, Xiaolin .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :9711-9720