Approximate Bayesian inference in a model for self-generated gradient collective cell movement

被引:0
作者
Devlin, Jon [1 ]
Borowska, Agnieszka [2 ]
Husmeier, Dirk [2 ]
Mackenzie, John [1 ]
机构
[1] Univ Strathclyde, Dept Math & Stat, Glasgow, Scotland
[2] Univ Glasgow, Sch Math & Stat, Glasgow, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Approximate Bayesian computation; Model calibration; Drift-diffusion model; Stochastic differential equations; Chemotaxis; SINGLE-PARTICLE TRACKING; PARAMETER INFERENCE; FOLIC-ACID; COMPUTATION; DIFFUSION; STATISTICS; EVOLUTION; MIGRATION; MOTILITY;
D O I
10.1007/s00180-025-01606-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we explore parameter inference in a novel hybrid discrete-continuum model describing the movement of a population of cells in response to a self-generated chemotactic gradient. The model employs a drift-diffusion stochastic process, rendering likelihood-based inference methods impractical. Consequently, we consider approximate Bayesian computation (ABC) methods, which have gained popularity for models with intractable or computationally expensive likelihoods. ABC involves simulating from the generative model, using parameters from generated observations that are "close enough" to the true data to approximate the posterior distribution. Given the plethora of existing ABC methods, selecting the most suitable one for a specific problem can be challenging. To address this, we employ a simple drift-diffusion stochastic differential equation (SDE) as a benchmark problem. This allows us to assess the accuracy of popular ABC algorithms under known configurations. We also evaluate the bias between ABC-posteriors and the exact posterior for the basic SDE model, where the posterior distribution is tractable. The top-performing ABC algorithms are subsequently applied to the proposed cell movement model to infer its key parameters. This study not only contributes to understanding cell movement but also sheds light on the comparative efficiency of different ABC algorithms in a well-defined context.
引用
收藏
页数:54
相关论文
共 82 条
  • [11] Spectral density-based and measure-preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs
    Buckwar, Evelyn
    Tamborrino, Massimiliano
    Tubikanec, Irene
    [J]. STATISTICS AND COMPUTING, 2020, 30 (03) : 627 - 648
  • [12] Random walk models in biology
    Codling, Edward A.
    Plank, Michael J.
    Benhamou, Simon
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2008, 5 (25) : 813 - 834
  • [13] Gaussian process emulation of dynamic computer codes
    Conti, S.
    Gosling, J. P.
    Oakley, J. E.
    O'Hagan, A.
    [J]. BIOMETRIKA, 2009, 96 (03) : 663 - 676
  • [14] Neutrophil migration in infection and wound repair: going forward in reverse
    de Oliveira, Sofia
    Rosowski, Emily E.
    Huttenlocher, Anna
    [J]. NATURE REVIEWS IMMUNOLOGY, 2016, 16 (06) : 378 - 391
  • [15] Optimal estimation of drift and diffusion coefficients in the presence of static localization error
    Devlin, J.
    Husmeier, D.
    Mackenzie, J. A.
    [J]. PHYSICAL REVIEW E, 2019, 100 (02)
  • [16] OPTIMAL ESTIMATION OF CELL-MOVEMENT INDEXES FROM THE STATISTICAL-ANALYSIS OF CELL TRACKING DATA
    DICKINSON, RB
    TRANQUILLO, RT
    [J]. AICHE JOURNAL, 1993, 39 (12) : 1995 - 2010
  • [17] Convergence of adaptive mixtures of importance sampling schemes
    Douc, R.
    Guillin, A.
    Marin, J.-M.
    Robert, C. P.
    [J]. ANNALS OF STATISTICS, 2007, 35 (01) : 420 - 448
  • [18] Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation
    Drovandi, C. C.
    Pettitt, A. N.
    [J]. BIOMETRICS, 2011, 67 (01) : 225 - 233
  • [19] Exact and Approximate Bayesian Inference for Low Integer-Valued Time Series Models with Intractable Likelihoods
    Drovandi, Christopher C.
    Pettitt, Anthony N.
    McCutchan, Roy A.
    [J]. BAYESIAN ANALYSIS, 2016, 11 (02): : 325 - 352
  • [20] Evans M., 2000, STAT DISTRIBUTIONS, V3rd, P187