Multi-scale Laplacian community detection in heterogeneous networks

被引:3
作者
Villegas, Pablo [1 ]
Gabrielli, Andrea [1 ,2 ]
Poggialini, Anna [1 ,3 ]
Gili, Tommaso [4 ,5 ]
机构
[1] Enrico Fermi Res Ctr CREF, Via Panisperna 89A, I-00184 Rome, Italy
[2] Univ Roma Tre, Dipartimento Ingn Civile Informat & Tecnol Aeronau, Via Vito Volterra 62, I-00146 Rome, Italy
[3] Univ Sapienza, Dipartimento Fis, Ple Moro 2, I-00185 Rome, Italy
[4] IMT Scuola Alti Studi Lucca, Networks Unit, Piazza San Francesco 19, I-55100 Lucca, Italy
[5] CNR, UoS Sapienza, Inst Complex Syst ISC, Piazzale Aldo Moro 2, I-00185 Rome, Italy
来源
PHYSICAL REVIEW RESEARCH | 2025年 / 7卷 / 01期
关键词
RANDOM-WALKS; MODULARITY; ORGANIZATION; GRAPHS; MODEL;
D O I
10.1103/PhysRevResearch.7.013065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Heterogeneous and complex networks represent intertwined interactions between real-world elements or agents. Determining the multiscale mesoscopic organization of clusters and intertwined structures is still a fundamental and open problem of complex network theory. By taking advantage of the recent Laplacian renormalization group (LRG), we scrutinize information diffusion pathways throughout networks to shed further light on this issue. Based on internode communicability, our definition provides a clear-cut framework for resolving the multiscale mesh of structures in complex networks, disentangling their intrinsic arboreal architecture. As it does not consider any topological null-model assumption, the LRG naturally permits the introduction of scale-dependent optimal partitions. Moreover, we demonstrate the existence of a particular class of nodes, called metastable nodes, that switch regions to which they belong at different scales, likely playing a pivotal role in cross-regional communication and, therefore, in managing macroscopic effects of the whole network.
引用
收藏
页数:16
相关论文
共 96 条
[31]   Community detection in networks: A user guide [J].
Fortunato, Santo ;
Hric, Darko .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 659 :1-44
[32]   Community detection in graphs [J].
Fortunato, Santo .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2010, 486 (3-5) :75-174
[33]   Multiscale unfolding of real networks by geometric renormalization [J].
Garcia-Perez, Guillermo ;
Boguna, Marian ;
Angeles Serrano, M. .
NATURE PHYSICS, 2018, 14 (06) :583-589
[34]   Proteome survey reveals modularity of the yeast cell machinery [J].
Gavin, AC ;
Aloy, P ;
Grandi, P ;
Krause, R ;
Boesche, M ;
Marzioch, M ;
Rau, C ;
Jensen, LJ ;
Bastuck, S ;
Dümpelfeld, B ;
Edelmann, A ;
Heurtier, MA ;
Hoffman, V ;
Hoefert, C ;
Klein, K ;
Hudak, M ;
Michon, AM ;
Schelder, M ;
Schirle, M ;
Remor, M ;
Rudi, T ;
Hooper, S ;
Bauer, A ;
Bouwmeester, T ;
Casari, G ;
Drewes, G ;
Neubauer, G ;
Rick, JM ;
Kuster, B ;
Bork, P ;
Russell, RB ;
Superti-Furga, G .
NATURE, 2006, 440 (7084) :631-636
[35]   Generalized network density matrices for analysis of multiscale functional diversity [J].
Ghavasieh, Arsham ;
De Domenico, Manlio .
PHYSICAL REVIEW E, 2023, 107 (04)
[36]   Statistical physics of complex information dynamics [J].
Ghavasieh, Arsham ;
Nicolini, Carlo ;
De Domenico, Manlio .
PHYSICAL REVIEW E, 2020, 102 (05)
[37]   Community structure in social and biological networks [J].
Girvan, M ;
Newman, MEJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :7821-7826
[38]  
Greiner W., 2012, Thermodynamics and Statistical Mechanics. Classical Theoretical Physics
[39]   Unifying the Notions of Modularity and Core-Periphery Structure in Functional Brain Networks during Youth [J].
Gu, Shi ;
Xia, Cedric Huchuan ;
Ciric, Rastko ;
Moore, Tyler M. ;
Gur, Ruben C. ;
Gur, Raquel E. ;
Satterthwaite, Theodore D. ;
Bassett, Danielle S. .
CEREBRAL CORTEX, 2020, 30 (03) :1087-1102
[40]   Evidence for dynamically organized modularity in the yeast protein-protein interaction network [J].
Han, JDJ ;
Bertin, N ;
Hao, T ;
Goldberg, DS ;
Berriz, GF ;
Zhang, LV ;
Dupuy, D ;
Walhout, AJM ;
Cusick, ME ;
Roth, FP ;
Vidal, M .
NATURE, 2004, 430 (6995) :88-93