Deep-learning-derived input function in dynamic [18F]FDG PET imaging of mice

被引:1
作者
Kuttner, Samuel [1 ,2 ,3 ]
Luppino, Luigi T. [2 ]
Convert, Laurence [4 ,5 ]
Sarrhini, Otman [4 ,5 ]
Lecomte, Roger [4 ,5 ,6 ]
Kampffmeyer, Michael C. [2 ]
Sundset, Rune [1 ,3 ]
Jenssen, Robert [2 ]
机构
[1] Univ Hosp North Norway, PET Imaging Ctr, Tromso, Norway
[2] UiT Arctic Univ Norway, Dept Phys & Technol, UiT Machine Learning Grp, Tromso, Norway
[3] UiT Arctic Univ Norway, Dept Clin Med, Nucl Med & Radiat Biol Res Grp, Tromso, Norway
[4] Univ Sherbrooke, Sherbrooke Mol Imaging Ctr CRCHUS, Sherbrooke, PQ, Canada
[5] Univ Sherbrooke, Dept Nucl Med & Radiobiol, Sherbrooke, PQ, Canada
[6] Imaging Res & Technol Inc, Sherbrooke, PQ, Canada
来源
FRONTIERS IN NUCLEAR MEDICINE | 2024年 / 4卷
关键词
dynamic positron emission tomography (PET); small-animal PET 18F-FDG PET/CT; Patlak analysis; arterial input function estimation; glucose metabolism; deep learning; prediction model; SMALL-ANIMAL PET; PARTIAL-VOLUME CORRECTION; BRAIN TRANSFER CONSTANTS; GLUCOSE-METABOLISM; F-18-FDG PET; GRAPHICAL EVALUATION; BLOOD; ARTERIAL; QUANTIFICATION;
D O I
10.3389/fnume.2024.1372379
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Dynamic positron emission tomography and kinetic modeling play a critical role in tracer development research using small animals. Kinetic modeling from dynamic PET imaging requires accurate knowledge of an input function, ideally determined through arterial blood sampling. Arterial cannulation in mice, however, requires complex, time-consuming and terminal surgery, meaning that longitudinal studies are impossible. The aim of the current work was to develop and evaluate a non-invasive, deep-learning-based prediction model (DLIF) that directly takes the PET data as input to predict a usable input function. We first trained and evaluated the DLIF model on 68 [18F]Fluorodeoxyglucose mouse scans with image-derived targets using cross validation. Subsequently, we evaluated the performance of a trained DLIF model on an external dataset consisting of 8 mouse scans where the input function was measured by continuous arterial blood sampling. The results showed that the predicted DLIF and image-derived targets were similar, and the net influx rate constants following from Patlak modeling using DLIF as input function were strongly correlated to the corresponding values obtained using the image-derived input function. There were somewhat larger discrepancies when evaluating the model on the external dataset, which could be attributed to systematic differences in the experimental setup between the two datasets. In conclusion, our non-invasive DLIF prediction method may be a viable alternative to arterial blood sampling in small animal [18F]FDG imaging. With further validation, DLIF could overcome the need for arterial cannulation and allow fully quantitative and longitudinal experiments in PET imaging studies of mice.
引用
收藏
页数:11
相关论文
共 49 条
[1]   Quantification of Brain Glucose Metabolism by 18F-FDG PET with Real-Time Arterial and Image-Derived Input Function in Mice [J].
Alf, Malte F. ;
Wyss, Matthias T. ;
Buck, Alfred ;
Weber, Bruno ;
Schibli, Roger ;
Kraemer, Stefanie D. .
JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (01) :132-138
[2]   Quantification of Positron Emission Tomography Data Using Simultaneous Estimation of the Input Function: Validation with Venous Blood and Replication of Clinical Studies [J].
Bartlett, Elizabeth A. ;
Ananth, Mala ;
Rossano, Samantha ;
Zhang, Mengru ;
Yang, Jie ;
Lin, Shu-fei ;
Nabulsi, Nabeel ;
Huang, Yiyun ;
Zanderigo, Francesca ;
Parsey, Ramin V. ;
DeLorenzo, Christine .
MOLECULAR IMAGING AND BIOLOGY, 2019, 21 (05) :926-934
[3]   Comparative assessment of linear least-squares, nonlinear least-squares, and Patlak graphical method for regional and local quantitative tracer kinetic modeling in cerebral dynamic 18F-FDG PET [J].
Ben Bouallegue, Faycal ;
Vauchot, Fabien ;
Mariano-Goulart, Denis .
MEDICAL PHYSICS, 2019, 46 (03) :1260-1271
[4]   Orthogonal regression: a teaching perspective [J].
Carr, James R. .
INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2012, 43 (01) :134-143
[5]   The ultra high sensitivity blood counter: a compact, MRI-compatible, radioactivity counter for pharmacokinetic studies in μl volumes [J].
Convert, Laurence ;
Sarrhini, Otman ;
Paille, Maxime ;
Salem, Nicolas ;
Charette, Paul G. ;
Lecomte, Roger .
BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2022, 8 (03)
[6]   Preclinical Imaging: an Essential Ally in Modern Biosciences [J].
Cunha, Lidia ;
Horvath, Ildiko ;
Ferreira, Sara ;
Lemos, Joana ;
Costa, Pedro ;
Vieira, Domingos ;
Veres, Daniel S. ;
Szigeti, Krisztian ;
Summavielle, Teresa ;
Mathe, Domokos ;
Metello, Luis F. .
MOLECULAR DIAGNOSIS & THERAPY, 2014, 18 (02) :153-173
[7]   A good practice guide to the administration of substances and removal of blood, including routes and volumes [J].
Diehl, KH ;
Hull, R ;
Morton, D ;
Pfister, R ;
Rabemampianina, Y ;
Smith, D ;
Vidal, JM ;
van de Vorstenbosch, C .
JOURNAL OF APPLIED TOXICOLOGY, 2001, 21 (01) :15-23
[8]   Positron emission tomography and single photon emission computed tomography imaging of tertiary lymphoid structures during the development of lupus nephritis [J].
Dorraji, Esmaeil S. ;
Oteiza, Ana ;
Kuttner, Samuel ;
Martin-Armas, Montserrat ;
Kanapathippillai, Premasany ;
Garbarino, Sara ;
Kalda, Gustav ;
Scussolini, Mara ;
Piana, Michele ;
Fenton, Kristin A. .
INTERNATIONAL JOURNAL OF IMMUNOPATHOLOGY AND PHARMACOLOGY, 2021, 35
[9]   Importance of Attenuation Correction (AC) for Small Animal PET Imaging [J].
El Ali, Henrik H. ;
Bodholdt, Rasmus Poul ;
Jorgensen, Jesper Tranekjr ;
Myschetzky, Rebecca ;
Kjaer, Andreas .
DIAGNOSTICS, 2012, 2 (04) :42-51
[10]   Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies [J].
Fang, Yu-Hua Dean ;
Muzic, Raymond F., Jr. .
JOURNAL OF NUCLEAR MEDICINE, 2008, 49 (04) :606-614