Local Whittle estimation in time-varying long memory series

被引:0
作者
Arteche, Josu [1 ]
Martins, Luis F. [2 ,3 ]
机构
[1] UPV EHU Univ Basque Country, Barrio Sarriena s-n, Bilbao 48940, Bizkaia, Spain
[2] Inst Univ Lisboa ISCTE IUL, Business Res Unit BRU IUL, Lisbon, Portugal
[3] Univ Surrey UK, CIMS, Guildford, Surrey, England
关键词
Long memory; local Whittle estimation; local stationarity; time-varying parameter; GAUSSIAN SEMIPARAMETRIC ESTIMATION; PARAMETER-ESTIMATION; MODELS;
D O I
10.1111/jtsa.12782
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The memory parameter is usually assumed to be constant in traditional long memory time series. We relax this restriction by considering the memory a time-varying function that depends on a finite number of parameters. A time-varying Local Whittle estimator of these parameters, and hence of the memory function, is proposed. Its consistency and asymptotic normality are shown for locally stationary and locally non-stationary long memory processes, where the spectral behaviour is restricted only at frequencies close to the origin. Its good finite sample performance is shown in a Monte Carlo exercise and in two empirical applications, highlighting its benefits over the fully parametric Whittle estimator proposed by Palma and Olea (2010). Standard inference techniques for the constancy of the memory are also proposed based on this estimator.
引用
收藏
页码:647 / 673
页数:27
相关论文
共 50 条
[41]   True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods [J].
Assaf, Ata ;
Alberiko Gil-Alana, Luis ;
Mokni, Khaled .
EMPIRICAL ECONOMICS, 2022, 63 (03) :1543-1570
[42]   A wavelet-based evaluation of time-varying long memory of equity markets: A paradigm in crisisl [J].
Tan, Pei P. ;
Chin, Cheong W. ;
Galagedera, Don U. A. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 410 :345-358
[43]   Multivariate Wavelet Whittle Estimation in Long-range Dependence [J].
Achard, Sophie ;
Gannaz, Irene .
JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (04) :476-512
[44]   Estimation of Linear Chirp Signals with Time-Varying Amplitudes [J].
Jiang, Xiaodong .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2025,
[45]   The Estimation Method of Time-varying Parameters of Regression Models [J].
Korkhin, A. S. .
JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2012, 44 (11) :10-28
[46]   Efficient estimation of Bayesian VARMAs with time-varying coefficients [J].
Chan, Joshua C. C. ;
Eisenstat, Eric .
JOURNAL OF APPLIED ECONOMETRICS, 2017, 32 (07) :1277-1297
[47]   Risk Estimation with a Time-Varying Probability of Zero Returns* [J].
Sucarrat, Genaro ;
Gronneberg, Steffen .
JOURNAL OF FINANCIAL ECONOMETRICS, 2022, 20 (02) :278-309
[48]   Distributed Estimation for Time-Varying Target in Noisy Environment [J].
Zhou, Zhenwei ;
Fang, Haitao ;
Hong, Yiguang .
PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, :4341-4346
[49]   ONLINE ESTIMATION OF TIME-VARYING FREQUENCY OF A SINUSOIDAL SIGNAL [J].
Le Van Tuan ;
Korotina, Marina ;
Bobtsov, Alexey ;
Aranovskiy, Stanislav ;
Pyrkin, Anton .
IFAC PAPERSONLINE, 2019, 52 (29) :245-250
[50]   Time-varying correlations in multivariate unobserved components time series models [J].
Schiavoni, Caterina ;
Koopman, Siem Jan ;
Palm, Franz ;
Smeekes, Stephan ;
van den Brakel, Jan .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2024,