Local Whittle estimation in time-varying long memory series

被引:0
作者
Arteche, Josu [1 ]
Martins, Luis F. [2 ,3 ]
机构
[1] UPV EHU Univ Basque Country, Barrio Sarriena s-n, Bilbao 48940, Bizkaia, Spain
[2] Inst Univ Lisboa ISCTE IUL, Business Res Unit BRU IUL, Lisbon, Portugal
[3] Univ Surrey UK, CIMS, Guildford, Surrey, England
关键词
Long memory; local Whittle estimation; local stationarity; time-varying parameter; GAUSSIAN SEMIPARAMETRIC ESTIMATION; PARAMETER-ESTIMATION; MODELS;
D O I
10.1111/jtsa.12782
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The memory parameter is usually assumed to be constant in traditional long memory time series. We relax this restriction by considering the memory a time-varying function that depends on a finite number of parameters. A time-varying Local Whittle estimator of these parameters, and hence of the memory function, is proposed. Its consistency and asymptotic normality are shown for locally stationary and locally non-stationary long memory processes, where the spectral behaviour is restricted only at frequencies close to the origin. Its good finite sample performance is shown in a Monte Carlo exercise and in two empirical applications, highlighting its benefits over the fully parametric Whittle estimator proposed by Palma and Olea (2010). Standard inference techniques for the constancy of the memory are also proposed based on this estimator.
引用
收藏
页码:647 / 673
页数:27
相关论文
共 50 条
[21]   A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series [J].
Moulines, E. ;
Roueff, F. ;
Taqqu, M. S. .
ANNALS OF STATISTICS, 2008, 36 (04) :1925-1956
[22]   Robust estimation in time series with long and short memory properties [J].
Reisen, Valderio Anselmo ;
Molinares, Fabio Fajardo .
ANNALES MATHEMATICAE ET INFORMATICAE, 2012, 39 :207-224
[23]   Adaptive local polynomial whittle estimation of long-range dependence [J].
Andrews, DWK ;
Sun, YX .
ECONOMETRICA, 2004, 72 (02) :569-614
[24]   A simple fractionally integrated model with a time-varying long memory parameter dt [J].
Boutahar, Mohamed ;
Dufrenot, Gilles ;
Peguin-Feissolle, Anne .
COMPUTATIONAL ECONOMICS, 2008, 31 (03) :225-241
[25]   Local asymptotic normality for a periodically time varying long memory parameter [J].
Amimour, Amine ;
Belaide, Karima .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (09) :2936-2952
[26]   A Simple Fractionally Integrated Model with a Time-varying Long Memory Parameter dt [J].
Mohamed Boutahar ;
Gilles Dufrénot ;
Anne Péguin-Feissolle .
Computational Economics, 2008, 31 :225-241
[27]   Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations [J].
Hou, Jie ;
Perron, Pierre .
JOURNAL OF ECONOMETRICS, 2014, 182 (02) :309-328
[28]   Seasonality robust local whittle estimation [J].
Wingert, Simon ;
Leschinski, Christian ;
Sibbertsen, Philipp .
APPLIED ECONOMICS LETTERS, 2020, 27 (18) :1489-1494
[29]   Local Whittle estimation with (quasi-)analytic wavelets [J].
Achard, Sophie ;
Gannaz, Irene .
JOURNAL OF TIME SERIES ANALYSIS, 2024, 45 (03) :421-443
[30]   Local polynomial Whittle estimation of perturbed fractional processes [J].
Frederiksen, Per ;
Nielsen, Frank S. ;
Nielsen, Morten Orregaard .
JOURNAL OF ECONOMETRICS, 2012, 167 (02) :426-447