PERSISTENCE PROPERTIES OF SOLUTIONS FOR MULTI-COMPONENT NOVIKOV EQUATIONS

被引:0
|
作者
Liu, Xin [1 ]
Wu, Xinglong [2 ]
机构
[1] Wuhan Univ Technol, Sch Math & Stat, Wuhan 430070, Peoples R China
[2] Guangdong Univ Foreign Studies, Sch Math & Stat, Guangzhou 510006, Peoples R China
关键词
Multi-component Novikov equation; asymptotic properties; logarithmic decay; algebraical decay; exponential decay; BI-HAMILTONIAN STRUCTURE; BLOW-UP PHENOMENA; GLOBAL EXISTENCE; WELL-POSEDNESS; WAVE SOLUTIONS; CAUCHY-PROBLEM;
D O I
10.58997/ejde.2025.27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the asymptotic behavior of the solution for a multi-component Novikov equation in weighted Sobolev spaces. We introduce a set of weighted functions, and prove that the strong solution will retain the corresponding decay properties when the initial data U0(x) and its derivative U0,x(x) decay logarithmically, algebraically, and exponentially at infinity.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [21] Multi-component WKI equations and their conservation laws
    Qu, CZ
    Yao, RX
    Liu, RC
    PHYSICS LETTERS A, 2004, 331 (05) : 325 - 331
  • [22] Well-posedness and analyticity of the Cauchy problem for the multi-component Novikov equation
    Mi, Yongsheng
    Guo, Boling
    Luo, Ting
    MONATSHEFTE FUR MATHEMATIK, 2020, 191 (02): : 295 - 323
  • [23] Geodesically convex energies and confinement of solutions for a multi-component system of nonlocal interaction equations
    Zinsl, Jonathan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (04):
  • [24] Multi-Component Coupled Fokas-Lenells Equations and Theirs Localized Wave Solutions
    Qiulan Zhao
    Huijie Song
    Xinyue Li
    Acta Applicandae Mathematicae, 2022, 181
  • [25] Multi-Component Coupled Fokas-Lenells Equations and Theirs Localized Wave Solutions
    Zhao, Qiulan
    Song, Huijie
    Li, Xinyue
    ACTA APPLICANDAE MATHEMATICAE, 2022, 181 (01)
  • [26] Geodesically convex energies and confinement of solutions for a multi-component system of nonlocal interaction equations
    Jonathan Zinsl
    Nonlinear Differential Equations and Applications NoDEA, 2016, 23
  • [27] STATIONARY SOLUTIONS OF THE BOUNDARY VALUE PROBLEM FOR THE EQUATIONS OF BAROTROPIC FLOW OF A MULTI-COMPONENT MEDIUM
    Mamontov, Alexander Evgenyevich
    Prokudin, Dmitriy Alexeyevich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (02): : 959 - 971
  • [28] Solutions of multi-component fractional symmetric systems
    Fazly, Mostafa
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (04):
  • [29] Solutions of multi-component fractional symmetric systems
    Mostafa Fazly
    Nonlinear Differential Equations and Applications NoDEA, 2017, 24
  • [30] Antimicrobial properties of a multi-component alloy
    Anne F. Murray
    Daniel Bryan
    David A. Garfinkel
    Cameron S. Jorgensen
    Nan Tang
    WLNC Liyanage
    Eric A. Lass
    Ying Yang
    Philip D. Rack
    Thomas G. Denes
    Dustin A. Gilbert
    Scientific Reports, 12