PERSISTENCE PROPERTIES OF SOLUTIONS FOR MULTI-COMPONENT NOVIKOV EQUATIONS

被引:0
|
作者
Liu, Xin [1 ]
Wu, Xinglong [2 ]
机构
[1] Wuhan Univ Technol, Sch Math & Stat, Wuhan 430070, Peoples R China
[2] Guangdong Univ Foreign Studies, Sch Math & Stat, Guangzhou 510006, Peoples R China
关键词
Multi-component Novikov equation; asymptotic properties; logarithmic decay; algebraical decay; exponential decay; BI-HAMILTONIAN STRUCTURE; BLOW-UP PHENOMENA; GLOBAL EXISTENCE; WELL-POSEDNESS; WAVE SOLUTIONS; CAUCHY-PROBLEM;
D O I
10.58997/ejde.2025.27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the asymptotic behavior of the solution for a multi-component Novikov equation in weighted Sobolev spaces. We introduce a set of weighted functions, and prove that the strong solution will retain the corresponding decay properties when the initial data U0(x) and its derivative U0,x(x) decay logarithmically, algebraically, and exponentially at infinity.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] Stability of peakons for a multi-component Novikov system
    Li, Zhigang
    APPLICABLE ANALYSIS, 2024,
  • [2] Motion of curves and solutions of two multi-component mKdV equations
    Yao, RX
    Qu, CZ
    Li, ZB
    CHAOS SOLITONS & FRACTALS, 2005, 23 (05) : 1567 - 1580
  • [3] Elastic properties of multi-component nickel solid solutions
    Chen, KY
    Zhao, LR
    Patnaik, PC
    Tse, JS
    Superalloys 2004, 2004, : 753 - 758
  • [4] Modeling of thermodynamic properties of multi-component electrolyte solutions
    方正
    方圆
    张全茹
    李元高
    Transactions of Nonferrous Metals Society of China, 2001, (03) : 425 - 429
  • [5] Modeling of thermodynamic properties of multi-component electrolyte solutions
    Fang, Z
    Fang, Y
    Zhang, QR
    Li, YG
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2001, 11 (03) : 425 - 429
  • [6] Bi-Hamiltonian structure of multi-component Novikov equation
    Hongmin Li
    Yuqi Li
    Yong Chen
    Journal of Nonlinear Mathematical Physics, 2014, 21 : 509 - 520
  • [7] Bi-Hamiltonian structure of multi-component Novikov equation
    Li, Hongmin
    Li, Yuqi
    Chen, Yong
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (04) : 509 - 520
  • [8] Analytical Cartesian solutions of the multi-component Camassa-Holm equations
    Hongli An
    Liying Hou
    Manwai Yuen
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 255 - 272
  • [9] Soliton Solutions of a Multi-Component Derivative Coupled Integrable Dispersionless Equations
    Yu, Guo-Fu
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2014, 83 (07)
  • [10] Analytical Cartesian solutions of the multi-component Camassa-Holm equations
    An, Hongli
    Hou, Liying
    Yuen, Manwai
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (02) : 255 - 272