Language-driven Object Fusion into Neural Radiance Fields with Pose-Conditioned Dataset Updates
被引:1
|
作者:
Shum, Ka Chun
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Hong Kong, Peoples R China
Shum, Ka Chun
[1
]
Kim, Jaeyeon
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Hong Kong, Peoples R China
Kim, Jaeyeon
[1
]
Binh-Son Hua
论文数: 0引用数: 0
h-index: 0
机构:
VinAI, Hanoi, Vietnam
Trinity Coll Dublin, Dublin, IrelandHong Kong Univ Sci & Technol, Hong Kong, Peoples R China
Binh-Son Hua
[2
,4
]
论文数: 引用数:
h-index:
机构:
Duc Thanh Nguyen
[3
]
Yeung, Sai-Kit
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Hong Kong, Peoples R China
Yeung, Sai-Kit
[1
]
机构:
[1] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[2] VinAI, Hanoi, Vietnam
[3] Deakin Univ, Geelong, Vic, Australia
[4] Trinity Coll Dublin, Dublin, Ireland
来源:
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024
|
2024年
关键词:
D O I:
10.1109/CVPR52733.2024.00495
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Neural radiance field (NeRF) is an emerging technique for 3D scene reconstruction and modeling. However, current NeRF-based methods are limited in the capabilities of adding or removing objects. This paper fills the aforementioned gap by proposing a new language-driven method for object manipulation in NeRFs through dataset updates. Specifically, to insert an object represented by a set of multi-view images into a background NeRF, we use a text-to-image diffusion model to blend the object into the given background across views. The generated images are then used to update the NeRF so that we can render view-consistent images of the object within the background. To ensure view consistency, we propose a dataset update strategy that prioritizes the radiance field training based on camera poses in a pose-ordered manner. We validate our method in two case studies: object insertion and object removal. Experimental results show that our method can generate photo-realistic results and achieves state-of-the-art performance in NeRF editing.
机构:
Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R ChinaCommun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R China
Song, Wenchao
Liu, Qiong
论文数: 0引用数: 0
h-index: 0
机构:
Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R ChinaCommun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R China
Liu, Qiong
Liu, Yanchao
论文数: 0引用数: 0
h-index: 0
机构:
Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R ChinaCommun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R China
Liu, Yanchao
Zhang, Pengzhou
论文数: 0引用数: 0
h-index: 0
机构:
Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R ChinaCommun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R China
Zhang, Pengzhou
Cao, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R ChinaCommun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R China