Improving the Catalytic Efficiency of an AA9 Lytic Polysaccharide Monooxygenase MtLPMO9G by Consensus Mutagenesis

被引:0
作者
Meng, Yao [1 ,2 ]
Gao, Wa [1 ,2 ]
Liu, Xiaohua [1 ]
Li, Tang [1 ]
Li, Kuikui [1 ]
Yin, Heng [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Engn Res Ctr Carbohydrate Agr Preparat, Dalian Technol Innovat Ctr Green Agr,Liaoning Prov, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
lytic polysaccharide monooxygenases; consensus mutagenesis; cellulose; synergistic degradation; CELLULOSE; DEGRADATION; OLIGOSACCHARIDES; DISCOVERY; PROTEINS; INSIGHTS; FAMILY;
D O I
10.3390/catal14090614
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cellulose is one of the most abundant renewable resources in nature. However, its recalcitrant crystalline structure hinders efficient enzymatic depolymerization. Unlike cellulases, lytic polysaccharide monooxygenases (LPMOs) can oxidatively cleave glycosidic bonds in the crystalline regions of cellulose, playing a crucial role in its enzymatic depolymerization. An AA9 LPMO from Myceliophthora thermophila was previously identified and shown to exhibit a highly efficient catalytic performance. To further enhance its catalytic efficiency, consensus mutagenesis was applied. Compared with the wild-type enzyme, the oxidative activities of mutants A165S and P167N increased by 1.8-fold and 1.4-fold, respectively, and their catalytic efficiencies (k(cat)/K-m) improved by 1.6-fold and 1.2-fold, respectively. The mutants also showed significantly enhanced activity in the synergistic degradation of cellulose with cellobiohydrolase. Additionally, the P167N mutant exhibited better H2O2 tolerance. A molecular dynamics analysis revealed that the increased activity of mutants A165S and P167N was due to the closer proximity of the active center to the substrate post-mutation. This study demonstrates that selecting appropriate mutation sites via a semi-rational design can significantly improve LPMO activity, providing valuable insights for the protein engineering of similar enzymes.
引用
收藏
页数:12
相关论文
共 52 条
  • [1] Anaerobic Digestion of Lignocellulose Components: Challenges and Novel Approaches
    Agregan, Ruben
    Lorenzo, Jose M.
    Kumar, Manoj
    Shariati, Mohammad Ali
    Khan, Muhammad Usman
    Sarwar, Abid
    Sultan, Muhammad
    Rebezov, Maksim
    Usman, Muhammad
    [J]. ENERGIES, 2022, 15 (22)
  • [2] A Review on the Modification of Cellulose and Its Applications
    Aziz, Tariq
    Farid, Arshad
    Haq, Fazal
    Kiran, Mehwish
    Ullah, Asmat
    Zhang, Kechun
    Li, Cheng
    Ghazanfar, Shakira
    Sun, Hongyue
    Ullah, Roh
    Ali, Amjad
    Muzammal, Muhammad
    Shah, Muddaser
    Akhtar, Nosheen
    Selim, Samy
    Hagagy, Nashwa
    Samy, Mennatalla
    Al Jaouni, Soad K.
    [J]. POLYMERS, 2022, 14 (15)
  • [3] Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris
    Berka, Randy M.
    Grigoriev, Igor V.
    Otillar, Robert
    Salamov, Asaf
    Grimwood, Jane
    Reid, Ian
    Ishmael, Nadeeza
    John, Tricia
    Darmond, Corinne
    Moisan, Marie-Claude
    Henrissat, Bernard
    Coutinho, Pedro M.
    Lombard, Vincent
    Natvig, Donald O.
    Lindquist, Erika
    Schmutz, Jeremy
    Lucas, Susan
    Harris, Paul
    Powlowski, Justin
    Bellemare, Annie
    Taylor, David
    Butler, Gregory
    de Vries, Ronald P.
    Allijn, Iris E.
    van den Brink, Joost
    Ushinsky, Sophia
    Storms, Reginald
    Powell, Amy J.
    Paulsen, Ian T.
    Elbourne, Liam D. H.
    Baker, Scott E.
    Magnuson, Jon
    LaBoissiere, Sylvie
    Clutterbuck, A. John
    Martinez, Diego
    Wogulis, Mark
    de Leon, Alfredo Lopez
    Rey, Michael W.
    Tsang, Adrian
    [J]. NATURE BIOTECHNOLOGY, 2011, 29 (10) : 922 - U222
  • [4] A fast and sensitive activity assay for lytic polysaccharide monooxygenase
    Breslmayr, Erik
    Hanzek, Marija
    Hanrahan, Aoife
    Leitner, Christian
    Kittl, Roman
    Santek, Bozidar
    Oostenbrink, Chris
    Ludwig, Roland
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
  • [5] Thermal transformation of micro-crystalline cellulose in phosphoric acid
    Butera, Gabriella
    De Pasquale, Claudio
    Maccotta, Antonella
    Alonzo, Giuseppe
    Conte, Pellegrino
    [J]. CELLULOSE, 2011, 18 (06) : 1499 - 1507
  • [6] Investigating the role of AA9 LPMOs in enzymatic hydrolysis of differentially steam-pretreated spruce
    Caputo, Fabio
    Tolgo, Monika
    Naidjonoka, Polina
    Krogh, Kristian B. R. M.
    Novy, Vera
    Olsson, Lisbeth
    [J]. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2023, 16 (01):
  • [7] Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose
    Cheng, Chao
    Haider, Junaid
    Liu, Pi
    Yang, Jianhua
    Tan, Zijian
    Huang, Tianchen
    Lin, Jianping
    Jiang, Min
    Liu, Haifeng
    Zhu, Leilei
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (51) : 15257 - 15266
  • [8] Lytic Polysaccharide Monooxygenase from Aspergillus fumigatus can Improve Enzymatic Cocktail Activity During Sugarcane Bagasse Hydrolysis
    de Gouvea, Paula Fagundes
    Gerolamo, Luis Eduardo
    Bernardi, Aline Vianna
    Soares Pereira, Lucas Matheus
    Uyemura, Sergio Akira
    Dinamarco, Taisa Magnani
    [J]. PROTEIN AND PEPTIDE LETTERS, 2019, 26 (05) : 377 - 385
  • [9] Myceliophthora thermophila M77 utilizes hydrolytic and oxidative mechanisms to deconstruct biomass
    dos Santos, Hevila Brognaro
    Souza Bezerra, Thais Milena
    Pradella, Jose G. C.
    Delabona, Priscila
    Lima, Deise
    Gomes, Eleni
    Hartson, Steve D.
    Rogers, Janet
    Couger, Brian
    Prade, Rolf
    [J]. AMB EXPRESS, 2016, 6
  • [10] Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency
    Eibinger, Manuel
    Ganner, Thomas
    Bubner, Patricia
    Rosker, Stephanie
    Kracher, Daniel
    Haltrich, Dietmar
    Ludwig, Roland
    Plank, Harald
    Nidetzky, Bernd
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (52) : 35929 - 35938