GAN-Based LiDAR Intensity Simulation

被引:0
作者
Marcus, Richard [1 ]
Gabel, Felix [1 ]
Knoop, Niklas [2 ]
Stamminger, Marc [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Chair Visual Comp, Erlangen, Germany
[2] E Fs TechHub GmbH, Gaimersheim, Germany
来源
DEEP LEARNING THEORY AND APPLICATIONS, DELTA 2023 | 2023年 / 1875卷
关键词
LiDAR simulation; GAN; Autonomous driving; VISION;
D O I
10.1007/978-3-031-39059-3_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Realistic vehicle sensor simulation is an important element in developing autonomous driving. As physics-based implementations of visual sensors like LiDAR are complex in practice, data-based approaches promise solutions. Using pairs of camera images and LiDAR scans from real test drives, GANs can be trained to translate between them. For this process, we contribute two additions. First, we exploit the camera images, acquiring segmentation data and dense depth maps as additional input for training. Second, we test the performance of the LiDAR simulation by testing how well an object detection network generalizes between real and synthetic point clouds to enable evaluation without ground truth point clouds. Combining both, we simulate LiDAR point clouds and demonstrate their realism.
引用
收藏
页码:419 / 433
页数:15
相关论文
共 29 条
  • [1] Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes
    Abu Alhaija, Hassan
    Mustikovela, Siva Karthik
    Mescheder, Lars
    Geiger, Andreas
    Rother, Carsten
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2018, 126 (09) : 961 - 972
  • [2] Amini A., 2021, Vista 2.0: an open, data-driven simulator for multimodal sensing and policy learning for autonomous vehicles
  • [3] [Anonymous], 2023, Velodyne: Velodyne
  • [4] Cabon Y., 2020, Virtual KITTI
  • [5] Deng JJ, 2021, Arxiv, DOI arXiv:2012.15712
  • [6] Dosovitskiy A., 2017, arXiv
  • [7] Gaidon A., 2016, Virtual worlds as proxy for multi-object tracking analysis
  • [8] Vision meets robotics: The KITTI dataset
    Geiger, A.
    Lenz, P.
    Stiller, C.
    Urtasun, R.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) : 1231 - 1237
  • [9] Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
  • [10] Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672