Study on Thermal Runaway Propagation Characteristics and Cooling Inhibition Mechanism of Lithium-Ion Batteries

被引:0
|
作者
Zheng, Yi [1 ,2 ]
Chen, Shuo [3 ]
Peng, Shengtao [4 ]
Feng, Xi [4 ]
Wang, Chun [1 ,2 ]
Zhang, Guangwen [1 ,2 ]
Zhao, Xiangdi [1 ,2 ]
机构
[1] State Key Lab Chem Safety, Qingdao 266071, Peoples R China
[2] SINOPEC Res Inst Safety Engn Co Ltd, Qingdao 266071, Peoples R China
[3] SINOPEC Hlth, Safety & Environm Protect Management Dept, Beijing 100728, Peoples R China
[4] Sinpoec Mkt Anhui Co, Hefei 230000, Peoples R China
关键词
Lithium-ion battery; Thermal runaway; Refrigerant; Emergency thermal delay; Safety; SUPPRESSION; BEHAVIOR; MODEL;
D O I
10.1007/s10694-025-01723-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
New energy vehicles have been recognized and promoted worldwide, but the safety hazards caused by thermal runaway and misfire of power lithium-ion batteries are still major challenges. This paper presents a three-dimensional thermal runaway simulation model that accounts for inter-cell coupling, chemical reactions, and heat transfer within a battery pack. The model investigates the propagation of thermal runaway, the heat diffusion process, and the suppression mechanisms under varying SOC conditions. By examining the refrigerant role in mitigating thermal runaway, it identifies the critical conditions necessary for effective thermal suppression of batteries using liquid CO2 and R410A as refrigerant at the early stage of thermal runaway. The results firstly show that the critical temperature rise for NCM and LFP batteries was observed within the ranges of 80-90 K and 105-120 K, respectively. Additionally, the critical propagation times were found to be in the ranges of 95-120 s and approximately 3000 s. The study also finds that the refrigerant can effectively lower the temperature of the power battery pack, thereby delaying the propagation of thermal runaway and enhancing safety. The critical times for NCM and LFP batteries are 75 and 150 s, respectively, while the essential flow rates required for effective suppression of thermal runaway are 0.080 kg/s for NCM and 0.038 kg/s for LFP. Notably, the thermal runaway of NCM batteries can be significantly mitigated with an application of refrigerant lasting 200 s; conversely, the critical emergency time for LFP battery thermal runaway is reduced to 150 s. Thus, the corresponding emergency critical times for NCM and LFP batteries are established as 75 and 150 s, respectively. It offers data support for the safe operation and emergency backup of large battery systems.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Understanding the thermal runaway of ni-rich lithium-ion batteries
    Nguyen T.T.D.
    Abada S.
    Lecocq A.
    Bernard J.
    Petit M.
    Marlair G.
    Grugeon S.
    Laruelle S.
    World Electric Vehicle Journal, 2019, 10 (04):
  • [42] Numerical Study on the Inhibition Control of Lithium-Ion Battery Thermal Runaway
    Hu, Hao
    Xu, Xiaoming
    Sun, Xudong
    Li, Renzheng
    Zhang, Yangjun
    Fu, Jiaqi
    ACS OMEGA, 2020, 5 (29): : 18254 - 18261
  • [43] Review of Flame Behavior and Its Suppression during Thermal Runaway in Lithium-Ion Batteries
    Mao, Yikai
    Chen, Yin
    Chen, Mingyi
    BATTERIES-BASEL, 2024, 10 (09):
  • [44] Research on the Inhibition of Thermal Runaway in Power Lithium-Ion Batteries by Modified Vermiculite Powder
    Shi, Yaqin
    Xing, Zhixiang
    Liu, Yecheng
    Peng, Ming
    Qi, Longtai
    FIRE TECHNOLOGY, 2025,
  • [45] Thermal runaway and flame propagation of lithium-ion battery in confined spaces: Experiments and simulations
    Xu, Yingying
    Lu, Jiajun
    Zhang, Pengwei
    Gao, Kejie
    Huang, Yuqi
    JOURNAL OF ENERGY STORAGE, 2025, 117
  • [46] Preventing Cell-to-Cell Propagation of Thermal Runaway in Lithium-Ion Batteries
    Srinivasan, Rengaswamy
    Thomas, M. E.
    Airola, M. B.
    Carkhuff, B. G.
    Frizzell-Makowski, L. J.
    Alkandry, H.
    Reuster, J. G.
    Oguz, H. N.
    Green, P. W.
    La Favors, J.
    Currano, L. J.
    Demirev, P. A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (02)
  • [47] Mechanism of internal thermal runaway propagation in blade batteries
    Feng, Xuning
    Zhang, Fangshu
    Huang, Wensheng
    Peng, Yong
    Xu, Chengshan
    Ouyang, Minggao
    JOURNAL OF ENERGY CHEMISTRY, 2024, 89 : 184 - 194
  • [48] Experimental study on thermal runaway and its propagation of large format prismatic lithium-ion batteries
    Wang, Boxuan
    Zhou, Zhizuan
    Li, Lun
    Peng, Yang
    Cao, Junda
    Yang, Lizhong
    Cao, Bei
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [49] Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery
    Zhou, Zhizuan
    Li, Maoyu
    Zhou, Xiaodong
    Ju, Xiaoyu
    Yang, Lizhong
    APPLIED ENERGY, 2023, 349
  • [50] Thermal runaway propagation characteristics of lithium-ion batteries with a non-uniform state of charge distribution
    Tian, Ying
    She, Yang
    Wu, Jiafeng
    Chai, Mu
    Huang, Liansheng
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (08) : 2185 - 2197