Existence and regularity results for critical (p, 2)-Laplacian equation

被引:0
作者
Wang, Lixiong [1 ]
Liu, Ting [2 ]
机构
[1] Hunan Inst Sci & Technol, Sch Math, Yueyang 414006, Hunan, Peoples R China
[2] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Hubei, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 11期
关键词
(p; 2)-Laplacian equation; Hartree-type nonlinearity; variational methods; regularity and symmetry; critical exponent; EIGENVALUES; UNIQUENESS;
D O I
10.3934/math.20241458
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of (p, 2)-Laplacian equation with Hartree-type nonlinearity and critical exponents. Under some general assumptions and based on variational tools, we establish the existence, regularity, and symmetry of nontrivial solutions for such a problem.
引用
收藏
页码:30186 / 30213
页数:28
相关论文
共 37 条
[1]   GENERALIZED EIGENVALUES OF THE (P, 2)-LAPLACIAN UNDER A PARAMETRIC BOUNDARY CONDITION [J].
Abreu, Jamil ;
Madeira, Gustavo F. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (01) :287-303
[2]   Multi-bump solutions for Choquard equation with deepening potential well [J].
Alves, Claudianor O. ;
Nobrega, Alannio B. ;
Yang, Minbo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (03)
[3]  
[Anonymous], 1997, Analysis
[4]  
Badiale M, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-0-85729-227-8
[5]   Soliton like solutions of a Lorentz invariant equation in dimension 3 [J].
Benci, V ;
Fortunato, D ;
Pisani, L .
REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) :315-344
[6]   Solitons in several space dimensions: Derrick's problem and infinitely many solutions [J].
Benci, V ;
D'Avenia, P ;
Fortunato, D ;
Pisani, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (04) :297-324
[7]  
Bhattacharya T, 2020, ACTA APPL MATH, V165, P65, DOI 10.1007/s10440-019-00241-9
[8]   Positive solutions to the planar logarithmic Choquard equation with exponential nonlinearity [J].
Cassani, Daniele ;
Du, Lele ;
Liu, Zhisu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 241
[9]   Groundstates for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent [J].
Cassani, Daniele ;
Van Schaftingen, Jean ;
Zhang Jianjun .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (03) :1377-1400
[10]   Choquard-type equations with Hardy-Littlewood Sobolev upper-critical growth [J].
Cassani, Daniele ;
Zhang, Jianjun .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :1184-1212