Averaging Principle for McKean-Vlasov SDEs Driven by FBMs

被引:0
作者
Zhang, Tongqi [1 ,2 ]
Xu, Yong [1 ,3 ]
Feng, Lifang [1 ]
Pei, Bin [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, 127 Youyi West Rd, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, 45 Gaoxin South 9th Rd, Shenzhen 518057, Peoples R China
[3] Northwestern Polytech Univ, MOE Key Lab Complex Sci Aerosp, 127 Youyi West Rd, Xian 710072, Peoples R China
关键词
Fractional Brownian motion; Averaging principle; Slow-fast McKean-Vlasov SDEs; DISTRIBUTION DEPENDENT SDES; FRACTIONAL BROWNIAN-MOTION; DYNAMICAL-SYSTEMS; CONVERGENCE; ADSORPTION; KINETICS; RESPECT;
D O I
10.1007/s12346-024-01099-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers a class of mixed slow-fast McKean-Vlasov stochastic differential equations that contain the fractional Brownian motion with Hurst parameter H>1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H > 1/2$$\end{document} and the standard Brownian motion. Firstly, we prove an existence and uniqueness theorem for the mixed coupled system. Secondly, under suitable assumptions on the coefficients, using the approach of Khasminskii's time discretization, we prove that the slow component strongly converges to the solution of the corresponding averaged equation in the mean square sense.
引用
收藏
页数:26
相关论文
共 43 条
[1]   DIFFUSION-INFLUENCED REACTION-KINETICS ON FRACTAL STRUCTURES [J].
BARZYKIN, AV ;
TACHIYA, M .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (12) :9591-9597
[2]   Multi-timescale systems and fast-slow analysis [J].
Bertram, Richard ;
Rubin, Jonathan E. .
MATHEMATICAL BIOSCIENCES, 2017, 287 :105-121
[3]  
Bogoliubov N., 1961, Asymptotic methods in the theory of non-linear oscillations
[4]   Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0,1/2) [J].
Cheridito, P ;
Nualart, D .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (06) :1049-1081
[5]   Mixed fractional Brownian motion [J].
Cheridito, P .
BERNOULLI, 2001, 7 (06) :913-934
[6]   Superdiffusion induced by a long-correlated external random force [J].
Desposito, M. A. .
PHYSICAL REVIEW E, 2011, 84 (06)
[7]  
E W., 2003, Not. Am. Math. Soc., V50, P1062
[8]   Distribution dependent SDEs driven by fractional Brownian motions [J].
Fan, Xiliang ;
Huang, Xing ;
Suo, Yongqiang ;
Yuan, Chenggui .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 151 :23-67
[9]  
Freidlin MI., 2012, Random perturbations of dynamical systems, V3, DOI [10.1007/978-3-642-25847-3, DOI 10.1007/978-3-642-25847-3]
[10]  
Galeati L., 2022, Probab. Theory Relat. Fields, V185, P1