ON AN INCREMENTAL VERSION OF THE CHEBYSHEV METHOD FOR THE MATRIX P-TH ROOT

被引:0
作者
Amat, S. [1 ]
Busquier, S. [1 ]
Ezquerro, J. A. [2 ]
Hernandez-Veron, M. A. [2 ]
Romero, N. [2 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Univ La Rioja, Dept Matemat & Comp, Logrono, Spain
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2024年
关键词
Matrix p-th root; Incremental Newton method; Chebyshev's method; Order of convergence; Convergence; Efficiency; SCHUR-PADE ALGORITHM; FRACTIONAL-POWERS; NEWTON METHOD; PTH ROOTS;
D O I
10.4208/jcm.2406-m2024-0017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to present an improvement of the incremental Newton method proposed by Iannazzo [SIAM J. Matrix Anal. Appl., 28:2 (2006), 503-523] for approximating the principal pp-th root of a matrix. We construct and analyze an incremental Chebyshev method with better numerical behavior. We present a convergence and numerical analysis of the method, where we compare it with the corresponding incremental Newton method. The new method has order of convergence three and is stable and more efficient than the incremental Newton method.
引用
收藏
页数:13
相关论文
共 21 条
[1]   On a new family of high-order iterative methods for the matrix pth root [J].
Amat, S. ;
Ezquerro, J. A. ;
Hernandez-Veron, M. A. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2015, 22 (04) :585-595
[2]   On the convergence of Schroder iteration functions for pth roots of complex numbers [J].
Cardoso, Joao R. ;
Loureiro, Ana F. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (21) :8833-8839
[3]   Accelerating dynamical-fermion computations using the rational hybrid Monte Carlo algorithm with multiple pseudofermion fields [J].
Clark, M. A. ;
Kennedy, A. D. .
PHYSICAL REVIEW LETTERS, 2007, 98 (05)
[4]   Rational Minimax Iterations for Computing the Matrix pth Root [J].
Gawlik, Evan S. .
CONSTRUCTIVE APPROXIMATION, 2021, 54 (01) :1-34
[5]   A binary powering Schur algorithm for computing primary matrix roots [J].
Greco, Federico ;
Iannazzo, Bruno .
NUMERICAL ALGORITHMS, 2010, 55 (01) :59-78
[6]   A Schur-Newton method for the matrix pth root and its inverse [J].
Guo, Chun-Hua ;
Higham, Nicholas J. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (03) :788-804
[7]   A study of Schroder's method for the matrix pth root using power series expansions [J].
Guo, Chun-Hua ;
Lu, Di .
NUMERICAL ALGORITHMS, 2020, 83 (01) :265-279
[8]  
Hasan MA, 2001, IEEE DECIS CONTR P, P4057, DOI 10.1109/CDC.2001.980812
[9]   AN IMPROVED SCHUR-PADE ALGORITHM FOR FRACTIONAL POWERS OF A MATRIX AND THEIR FRECHET DERIVATIVES [J].
Higham, Nicholas J. ;
Lin, Lijing .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (03) :1341-1360
[10]   A SCHUR-PADE ALGORITHM FOR FRACTIONAL POWERS OF A MATRIX [J].
Higham, Nicholas J. ;
Lin, Lijing .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (03) :1056-1078