ERGODIC RECURRENCE AND BOUNDED GAPS BETWEEN PRIMES

被引:0
作者
Pan, Hao [1 ]
机构
[1] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210046, Peoples R China
基金
中国国家自然科学基金;
关键词
Ergodic recurrence; bounded gaps between primes; Kronecker factor; MULTIPLE RECURRENCE; AVERAGES;
D O I
10.1090/tran/9299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X,B-X,mu,T) be a measure-preserving probability system with T is invertible. Suppose that A is an element of B-X with mu(A)>0 and & varepsilon; > 0. For any m >= 1, there exist infinitely many primes p0,p1,& mldr;,pm with p0<& ctdot;<pm such that mu(A boolean AND T(-(pi-1))A)>=mu(A)(2)-& varepsilon; for each 0 <= i <= m and p20-p0<C-m,C- A,C-is an element of where C-m,C- A,C-is an element of > 0 is a constant only depending on m, A and & varepsilon;.
引用
收藏
页码:1215 / 1234
页数:20
相关论文
共 32 条
[1]   Bounded gaps between primes in short intervals [J].
Alweiss R. ;
Luo S. .
Research in Number Theory, 2018, 4 (2)
[2]   Gaps between primes in Beatty sequences [J].
Baker, Roger C. ;
Zhao, Liangyi .
ACTA ARITHMETICA, 2016, 172 (03) :207-242
[3]   EXPONENTIAL-SUMS OVER PRIMES IN AN ARITHMETIC-PROGRESSION [J].
BALOG, A ;
PERELLI, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 93 (04) :578-582
[4]   Multiple recurrence and nilsequences [J].
Bergelson, V ;
Host, B ;
Kra, B ;
Ruzsa, I .
INVENTIONES MATHEMATICAE, 2005, 160 (02) :261-303
[5]  
Bergelson V., 2008, COLLOQ MATH-WARSAW, V110, P1, DOI DOI 10.4064/CM110-1-1
[6]   Multiple recurrence for two commuting transformations [J].
Chu, Qing .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 :771-792
[7]   Ergodic averages of commuting transformations with distinct degree polynomial iterates [J].
Chu, Qing ;
Frantzikinakis, Nikos ;
Host, Bernard .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 102 :801-842
[8]   BOUNDED GAPS BETWEEN PRIMES IN SPECIAL SEQUENCES [J].
Chua, Lynn ;
Park, Soohyun ;
Smith, Geoffrey D. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (11) :4597-4611
[9]  
Einsiedler M, 2011, GRAD TEXTS MATH, V259, P1, DOI 10.1007/978-0-85729-021-2_1
[10]   Multiple ergodic averages for three polynomials and applications [J].
Frantzikinakis, Nikos .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (10) :5435-5475