Integrating sensor data and machine learning to advance the science and management of river carbon emissions

被引:2
作者
Brown, Lee E. [1 ]
Maavara, Taylor [1 ]
Zhang, Jiangwei [2 ]
Chen, Xiaohui [2 ]
Klaar, Megan [1 ]
Moshe, Felicia Orah [3 ]
Ben-Zur, Elad [4 ]
Stein, Shaked [4 ]
Grayson, Richard [1 ]
Carter, Laura [1 ]
Levintal, Elad [5 ]
Gal, Gideon [4 ]
Ziv, Pazit [1 ]
Tarkowski, Frank [6 ]
Pathak, Devanshi [7 ]
Khamis, Kieran [8 ]
Barquin, Jose [9 ]
Philamore, Hemma [10 ]
Gradilla-Hernandez, Misael Sebastian [11 ]
Arnon, Shai [5 ]
机构
[1] Univ Leeds, Sch Geog & waterleeds, Leeds, England
[2] Univ Leeds, Sch Civil Engn, Leeds, England
[3] Minist Agr, Dept Soil Conservat, Soil Eros Res Stn, Bet Dagan, Israel
[4] Israel Oceanog & Limnol Res, Kinneret Limnol Lab, Migdal, Israel
[5] Bengurion Univ Negev, Zuckerberg Inst Water Res, Jacob Blaustein Inst Desert Res, Beer Sheva, Israel
[6] Yorkshire Water Serv Ltd, Bradford, England
[7] UFZ, Helmholtz Ctr Environm Res, Dept Aquat Ecosyst Anal & Management, Magdeburg, Germany
[8] Univ Birmingham, Sch Geog, Birmingham, England
[9] Univ Cantabria, IHCantabria Inst Hidraul Ambiental, Santander, Spain
[10] Univ Bristol, Sch Engn Math & Technol, Bristol, England
[11] Tecnol Monterrey, Escuela Ingn & Ciencias, Monterrey, Mexico
基金
欧盟地平线“2020”; 英国自然环境研究理事会;
关键词
carbon dioxide; machine learning; methane; metabolism; sensors; water quality; Hyunjung (Nick) Kim; ECOSYSTEM METABOLISM; STREAM METABOLISM; TEMPORAL VARIABILITY; ORGANIC-CARBON; WATER-QUALITY; LAND-USE; DYNAMICS; CO2; MISSISSIPPI; TEMPERATURE;
D O I
10.1080/10643389.2024.2429912
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Estimates of greenhouse gas emissions from river networks remain highly uncertain in many parts of the world, leading to gaps in global inventories and preventing effective management. In-situ sensor technology advances, coupled with mobile sensors on robotic sensor-deployment platforms, will allow more effective data acquisition to monitor carbon cycle processes influencing river CO2 and CH4 emissions. However, if countries are to respond effectively to global climate change threats, sensors must be installed more strategically to ensure that they can be used to directly evaluate a range of management responses across river networks. We evaluate how sensors and analytical advances can be integrated into networks that are adaptable to monitor a range of catchment processes and human modifications. The most promising data analytics that provide processing, modeling, and visualizing approaches for high-resolution river system data are assessed, illustrating how multi-sensor data coupled with machine learning solutions can improve both proactive (e.g. forecasting) and reactive (e.g. alerts) strategies to better manage river catchment carbon emissions.
引用
收藏
页数:24
相关论文
共 140 条
  • [61] Development of The Navigator: A Lagrangian sensing system to characterize surface freshwater ecosystems
    Khandelwal, Aashish
    Castillo, Tzion
    Gonzalez-Pinzon, Ricardo
    [J]. WATER RESEARCH, 2023, 245
  • [62] Development of a data-driven ensemble regressor and its applicability for identifying contextual and collective outliers in groundwater level time-series data
    Kim, Yuhan
    Jeong, Jiho
    Park, Heejeong
    Kwon, Mijin
    Cho, Chunhyung
    Jeong, Jina
    [J]. JOURNAL OF HYDROLOGY, 2022, 612
  • [63] Instream wood increases riverbed temperature variability in a lowland sandy stream
    Klaar, Megan J.
    Shelley, Felicity S.
    Hannah, David M.
    Krause, Stefan
    [J]. RIVER RESEARCH AND APPLICATIONS, 2020, 36 (08) : 1529 - 1542
  • [64] CO2 emissions from peat-draining rivers regulated by water pH
    Klemme, Alexandra
    Rixen, Tim
    Mueller-Dum, Denise
    Muller, Moritz
    Notholt, Justus
    Warneke, Thorsten
    [J]. BIOGEOSCIENCES, 2022, 19 (11) : 2855 - 2880
  • [65] Experimental nitrogen and phosphorus additions increase rates of stream ecosystem respiration and carbon loss
    Kominoski, John S.
    Rosemond, Amy D.
    Benstead, Jonathan P.
    Gulis, Vlad
    Manning, David W. P.
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 2018, 63 (01) : 22 - 36
  • [66] Portable low-cost open-source wireless spectrophotometer for fast and reliable measurements
    Laganovska, Katrina
    Zolotarjovs, Aleksejs
    Vazquez, Mercedes
    Mc Donnell, Kirsty
    Liepins, Janis
    Ben-Yoav, Hadar
    Karitans, Varis
    Smits, Krisjanis
    [J]. HARDWAREX, 2020, 7 (07):
  • [67] High Resolution Mapping of Nitrate Loads of a Reservoir Using an Uncrewed Surface Vehicle: Potential Opportunities and Challenges
    Lee, Kwang-Hun
    Ali, Shahid
    Kim, Yena
    Lee, Kitack
    Kwon, Sae Yun
    Kam, Jonghun
    [J]. WATER RESOURCES RESEARCH, 2023, 59 (11)
  • [68] eGreenhouse: Robotically positioned, low-cost, open-source CO2 analyzer and sensor device for greenhouse applications
    Levintal, Elad
    Kang, Kenneth Lee
    Larson, Lars
    Winkelman, Eli
    Nackley, Lloyd
    Weisbrod, Noam
    Selker, John S.
    Udell, Chester J.
    [J]. HARDWAREX, 2021, 9
  • [69] Is the Hyporheic Zone Relevant beyond the Scientific Community?
    Lewandowski, Joerg
    Arnon, Shai
    Banks, Eddie
    Batelaan, Okke
    Betterle, Andrea
    Broecker, Tabea
    Coll, Claudia
    Drummond, Jennifer D.
    Garcia, Jaime Gaona
    Galloway, Jason
    Gomez-Velez, Jesus
    Grabowski, Robert C.
    Herzog, Skuyler P.
    Hinkelmann, Reinhard
    Hoehne, Anja
    Hollender, Juliane
    Horn, Marcus A.
    Jaeger, Anna
    Krause, Stefan
    Lochner Prats, Adrian
    Magliozzi, Chiara
    Meinikmann, Karin
    Mojarrad, Brian Babak
    Mueller, Birgit Maria
    Peralta-Maraver, Ignacio
    Popp, Andrea L.
    Posselt, Malte
    Putschew, Anke
    Radke, Michael
    Raza, Muhammad
    Riml, Joakim
    Robertson, Anne
    Rutere, Cyrus
    Schaper, Jonas L.
    Schirmer, Mario
    Schulz, Hanna
    Shanafield, Margaret
    Singh, Tanu
    Ward, Adam S.
    Wolke, Philipp
    Worman, Anders
    Wu, Liwen
    [J]. WATER, 2019, 11 (11)
  • [70] Groundwater contamination source identification based on a hybrid particle swarm optimization-extreme learning machine
    Li, Jiuhui
    Lu, Wenxi
    Wang, Han
    Fan, Yue
    Chang, Zhenbo
    [J]. JOURNAL OF HYDROLOGY, 2020, 584 (584)