Integrating sensor data and machine learning to advance the science and management of river carbon emissions

被引:2
作者
Brown, Lee E. [1 ]
Maavara, Taylor [1 ]
Zhang, Jiangwei [2 ]
Chen, Xiaohui [2 ]
Klaar, Megan [1 ]
Moshe, Felicia Orah [3 ]
Ben-Zur, Elad [4 ]
Stein, Shaked [4 ]
Grayson, Richard [1 ]
Carter, Laura [1 ]
Levintal, Elad [5 ]
Gal, Gideon [4 ]
Ziv, Pazit [1 ]
Tarkowski, Frank [6 ]
Pathak, Devanshi [7 ]
Khamis, Kieran [8 ]
Barquin, Jose [9 ]
Philamore, Hemma [10 ]
Gradilla-Hernandez, Misael Sebastian [11 ]
Arnon, Shai [5 ]
机构
[1] Univ Leeds, Sch Geog & waterleeds, Leeds, England
[2] Univ Leeds, Sch Civil Engn, Leeds, England
[3] Minist Agr, Dept Soil Conservat, Soil Eros Res Stn, Bet Dagan, Israel
[4] Israel Oceanog & Limnol Res, Kinneret Limnol Lab, Migdal, Israel
[5] Bengurion Univ Negev, Zuckerberg Inst Water Res, Jacob Blaustein Inst Desert Res, Beer Sheva, Israel
[6] Yorkshire Water Serv Ltd, Bradford, England
[7] UFZ, Helmholtz Ctr Environm Res, Dept Aquat Ecosyst Anal & Management, Magdeburg, Germany
[8] Univ Birmingham, Sch Geog, Birmingham, England
[9] Univ Cantabria, IHCantabria Inst Hidraul Ambiental, Santander, Spain
[10] Univ Bristol, Sch Engn Math & Technol, Bristol, England
[11] Tecnol Monterrey, Escuela Ingn & Ciencias, Monterrey, Mexico
基金
欧盟地平线“2020”; 英国自然环境研究理事会;
关键词
carbon dioxide; machine learning; methane; metabolism; sensors; water quality; Hyunjung (Nick) Kim; ECOSYSTEM METABOLISM; STREAM METABOLISM; TEMPORAL VARIABILITY; ORGANIC-CARBON; WATER-QUALITY; LAND-USE; DYNAMICS; CO2; MISSISSIPPI; TEMPERATURE;
D O I
10.1080/10643389.2024.2429912
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Estimates of greenhouse gas emissions from river networks remain highly uncertain in many parts of the world, leading to gaps in global inventories and preventing effective management. In-situ sensor technology advances, coupled with mobile sensors on robotic sensor-deployment platforms, will allow more effective data acquisition to monitor carbon cycle processes influencing river CO2 and CH4 emissions. However, if countries are to respond effectively to global climate change threats, sensors must be installed more strategically to ensure that they can be used to directly evaluate a range of management responses across river networks. We evaluate how sensors and analytical advances can be integrated into networks that are adaptable to monitor a range of catchment processes and human modifications. The most promising data analytics that provide processing, modeling, and visualizing approaches for high-resolution river system data are assessed, illustrating how multi-sensor data coupled with machine learning solutions can improve both proactive (e.g. forecasting) and reactive (e.g. alerts) strategies to better manage river catchment carbon emissions.
引用
收藏
页数:24
相关论文
共 140 条
  • [1] Drought and postdrought recovery cycles in an intermittent Mediterranean stream:: structural and functional aspects
    Acuña, V
    Muñoz, I
    Giorgi, A
    Omella, M
    Sabater, F
    Sabater, S
    [J]. JOURNAL OF THE NORTH AMERICAN BENTHOLOGICAL SOCIETY, 2005, 24 (04): : 919 - 933
  • [2] Highest rates of gross primary productivity maintained despite CO2 depletion in a temperate river network
    Aho, Kelly S.
    Hosen, Jacob D.
    Logozzo, Laura A.
    McGillis, Wade R.
    Raymond, Peter A.
    [J]. LIMNOLOGY AND OCEANOGRAPHY LETTERS, 2021, 6 (04) : 200 - 206
  • [3] Watershed Land Use and Seasonal Variation Constrain the Influence of Riparian Canopy Cover on Stream Ecosystem Metabolism
    Alberts, Jeremy M.
    Beaulieu, Jake J.
    Buffam, Ishi
    [J]. ECOSYSTEMS, 2017, 20 (03) : 553 - 567
  • [4] Internet of Things and citizen science as alternative water quality monitoring approaches and the importance of effective water quality communication
    Amador-Castro, Fernando
    Gonzalez-Lopez, Martin Esteban
    Lopez-Gonzalez, Gabriela
    Garcia-Gonzalez, Alejandro
    Diaz-Torres, Osiris
    Carbajal-Espinosa, Oscar
    Gradilla-Hernandez, Misael Sebastian
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 352
  • [5] [Anonymous], 2018, The Paris Agreement
  • [6] The metabolic regimes of 356 rivers in the United States
    Appling, Alison P.
    Read, Jordan S.
    Winslow, Luke A.
    Arroita, Maite
    Bernhardt, Emily S.
    Griffiths, Natalie A.
    Hall, Robert O., Jr.
    Harvey, Judson W.
    Heffernan, James B.
    Stanley, Emily H.
    Stets, Edward G.
    Yackulic, Charles B.
    [J]. SCIENTIFIC DATA, 2018, 5
  • [7] Twenty years of daily metabolism show riverine recovery following sewage abatement
    Arroita, Maite
    Elosegi, Arturo
    Hall Jr, Robert O.
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 2019, 64 : S77 - S92
  • [8] Organic sediment pulses impact rivers across multiple levels of ecological organization
    Aspray, Katie L.
    Holden, Joseph
    Ledger, Mark E.
    Mainstone, Chris P.
    Brown, Lee E.
    [J]. ECOHYDROLOGY, 2017, 10 (06)
  • [9] Development of transparent high-frequency soft sensor of total nitrogen and total phosphorus concentrations in rivers using stacked convolutional auto-encoder and explainable AI
    Ba-Alawi, Abdulrahman H.
    Heo, SungKu
    Aamer, Hanaa
    Chang, Roberto
    Woo, TaeYong
    Kim, MinHan
    Yoo, ChangKyoo
    [J]. JOURNAL OF WATER PROCESS ENGINEERING, 2023, 53
  • [10] Battin TJ, 2008, NAT GEOSCI, V1, P95, DOI 10.1038/ngeo101