Reverse translation of artificial intelligence in glaucoma: Connecting basic science with clinical applications

被引:4
作者
Ma, Da [1 ,2 ,3 ]
Pasquale, Louis R. [4 ]
Girard, Michael J. A. [5 ,6 ,7 ]
Leung, Christopher K. S. [8 ]
Jia, Yali [9 ]
Sarunic, Marinko V. [3 ,10 ]
Sappington, Rebecca M. [1 ,2 ]
Chan, Kevin C. [11 ,12 ,13 ]
机构
[1] Wake Forest Univ, Sch Med, Winston Salem, NC 27109 USA
[2] Atrium Hlth Wake Forest Baptist Med Ctr, Winston Salem, NC 27157 USA
[3] Simon Fraser Univ, Sch Engn Sci, Burnaby, BC, Canada
[4] Icahn Sch Med Mt Sinai, Dept Ophthalmol, New York, NY USA
[5] Singapore Eye Res Inst, Singapore Natl Eye Ctr, Ophthalm Engn & Innovat Lab OEIL, Singapore, Singapore
[6] Duke NUS Med Sch, Singapore, Singapore
[7] Inst Mol & Clin Ophthalmol, Basel, Switzerland
[8] Univ Hong Kong, Dept Ophthalmol, Hong Kong, Peoples R China
[9] Oregon Hlth & Sci Univ, Casey Eye Inst, Portland, OR USA
[10] UCL, Inst Ophthalmol, London, England
[11] NYU, Neurosci Inst, NYU Grossman Sch Med, Dept Ophthalmol, New York, NY 10012 USA
[12] NYU, Neurosci Inst, NYU Grossman Sch Med, Dept Radiol,NYU Langone Hlth, New York, NY 10012 USA
[13] NYU, Tandon Sch Engn, Dept Biomed Engn, New York, NY 10012 USA
来源
FRONTIERS IN OPHTHALMOLOGY | 2023年 / 2卷
基金
美国国家卫生研究院;
关键词
deep learning; artificial intelligence; reverse translation; transfer learning; glaucoma; optical coherence tomography; visual field; OPTICAL COHERENCE TOMOGRAPHY; CONVOLUTIONAL NEURAL-NETWORK; NERVE HEAD; VISUAL-FIELD; INTRAOCULAR-PRESSURE; ELECTRON-MICROSCOPY; IN-VIVO; ANGIOGRAPHY; IMAGES; RISK;
D O I
10.3389/fopht.2022.1057896
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Artificial intelligence (AI) has been approved for biomedical research in diverse areas from bedside clinical studies to benchtop basic scientific research. For ophthalmic research, in particular glaucoma, AI applications are rapidly growing for potential clinical translation given the vast data available and the introduction of federated learning. Conversely, AI for basic science remains limited despite its useful power in providing mechanistic insight. In this perspective, we discuss recent progress, opportunities, and challenges in the application of AI in glaucoma for scientific discoveries. Specifically, we focus on the research paradigm of reverse translation, in which clinical data are first used for patient-centered hypothesis generation followed by transitioning into basic science studies for hypothesis validation. We elaborate on several distinctive areas of research opportunities for reverse translation of AI in glaucoma including disease risk and progression prediction, pathology characterization, and sub-phenotype identification. We conclude with current challenges and future opportunities for AI research in basic science for glaucoma such as inter-species diversity, AI model generalizability and explainability, as well as AI applications using advanced ocular imaging and genomic data.
引用
收藏
页数:12
相关论文
共 117 条
[1]  
Adi V, 2021, INVEST OPHTH VIS SCI, V62
[2]   In Vivo Three-Dimensional Lamina Cribrosa Strains in Healthy, Ocular Hypertensive, and Glaucoma Eyes Following Acute Intraocular Pressure Elevation [J].
Beotra, Meghna R. ;
Wang, Xiaofei ;
Tun, Tin A. ;
Zhang, Liang ;
Baskaran, Mani ;
Aung, Tin ;
Strouthidis, Nicholas G. ;
Girard, Michael J. A. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (01) :260-272
[3]   Real-time retinal layer segmentation of OCT volumes with GPU accelerated inferencing using a compressed, low-latency neural network [J].
Borkovkina, Svetlana ;
Camino, Acner ;
Janpongsri, Worawee ;
Sarunic, Marinko V. ;
Jian, Yifan .
BIOMEDICAL OPTICS EXPRESS, 2020, 11 (07) :3968-3984
[4]  
Bowd C, 2022, INVEST OPHTH VIS SCI, V63
[5]  
Braeu FA, 2022, Arxiv, DOI arXiv:2206.04689
[6]  
Braeu FA, 2022, Arxiv, DOI arXiv:2204.06931
[7]  
Braeu FA, 2022, INVEST OPHTH VIS SCI, V63
[8]   Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina Using OCT Angiography [J].
Chen, Aiyin ;
Liu, Liang ;
Wang, Jie ;
Zang, Pengxiao ;
Edmunds, Beth ;
Lombardi, Lorinna ;
Davis, Ellen ;
Morrison, John C. ;
Jia, Yali ;
Huang, David .
OPHTHALMOLOGY, 2020, 127 (04) :484-491
[9]  
Chen S, 2022, arXiv
[10]   Open-source deep learning-based automatic segmentation of mouse Schlemm's canal in optical coherence tomography images [J].
Choy, Kevin C. ;
Li, Guorong ;
Stamer, W. Daniel ;
Farsiu, Sina .
EXPERIMENTAL EYE RESEARCH, 2022, 214