Identification and dissection of prostate cancer grounded on fatty acid metabolism-correlative features for predicting prognosis and assisting immunotherapy

被引:0
作者
Zheng, Yongbo [1 ]
Peng, Yueqiang [2 ]
Gao, Yingying [3 ]
Yang, Guo [1 ]
Jiang, Yu [4 ]
Zhang, Gaojie [1 ]
Wang, Linfeng [1 ]
Yu, Jiang [1 ]
Huang, Yong [1 ]
Wei, Ziling [5 ]
Liu, Jiayu [1 ]
机构
[1] Chongqing Med Univ, Dept Urol, Affiliated Hosp 1, Chongqing 400042, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Urol, Beijing 100730, Peoples R China
[3] Chongqing Med Univ, Dept Clin Lab, Affiliated Banan Hosp, Chongqing 401320, Peoples R China
[4] Jilin Univ, Affiliated Hosp 1, Dept Urol, Changchun 130061, Jilin, Peoples R China
[5] Chongqing Med Univ, Coll Basic Med, Chongqing 400016, Peoples R China
关键词
Prostate cancer; Fatty acid metabolism; Prognosis; Immunotherapy; Tumor microenvironment; REGULATORY T-CELLS; LIPID-METABOLISM; FIBROBLASTS; MODELS;
D O I
10.1016/j.compbiolchem.2024.108323
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Fatty acid metabolism (FAM) plays a critical role in tumor progression and therapeutic resistance by enhancing lipid biosynthesis, storage, and catabolism. Dysregulated FAM is a hallmark of prostate cancer (PCa), enabling cancer cells to adapt to extracellular signals and metabolic changes, with the tumor microenvironment (TME) playing a key role. However, the prognostic significance of FAM in PCa remains unexplored. Methods: We analyzed 309 FAM-related genes to develop a prognostic model using least absolute shrinkage and selection operator (LASSO) regression based on The Cancer Genome Atlas (TCGA) database. This model stratified PCa patients into high- and low-risk groups and was validated using the Gene Expression Omnibus (GEO) database. We constructed a nomogram incorporating risk score, clinical variables (T and N stage, Gleason score, age), and assessed its performance with calibration curves. The associations between risk score, tumor mutation burden (TMB), immune checkpoint inhibitors (ICIs), and TME features were also examined. Finally, a hub gene was identified via protein-protein interaction (PPI) networks and validated. Results: The risk score was an independent prognostic factor for PCa. High-risk patients showed worse survival outcomes but were more responsive to immunotherapy, chemotherapy, and targeted therapies. A core gene with high expression correlated with poor prognosis, unfavorable clinicopathological features, and immune cell infiltration. Conclusion: These findings reveal the prognostic importance of FAM in PCa, providing novel insights into prognosis and potential therapeutic targets for PCa management.
引用
收藏
页数:22
相关论文
共 69 条
[1]   Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells [J].
Al-Khami, Amir A. ;
Zheng, Liqin ;
Del Valle, Luis ;
Hossain, Fokhrul ;
Wyczechowska, Dorota ;
Zabaleta, Jovanny ;
Sanchez, Maria D. ;
Dean, Matthew J. ;
Rodriguez, Paulo C. ;
Ochoa, Augusto C. .
ONCOIMMUNOLOGY, 2017, 6 (10)
[2]   Discrimination and Calibration of Clinical Prediction Models Users' Guides to the Medical Literature [J].
Alba, Ana Carolina ;
Agoritsas, Thomas ;
Walsh, Michael ;
Hanna, Steven ;
Iorio, Alfonso ;
Devereaux, P. J. ;
McGinn, Thomas ;
Guyatt, Gordon .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (14) :1377-1384
[3]   Lipid metabolism in cancer: New perspectives and emerging mechanisms [J].
Broadfield, Lindsay A. ;
Pane, Antonino Alejandro ;
Talebi, Ali ;
Swinnen, Johannes, V ;
Fendt, Sarah-Maria .
DEVELOPMENTAL CELL, 2021, 56 (10) :1363-1393
[4]   Lipidomic Profiling of Clinical Prostate Cancer Reveals Targetable Alterations in Membrane Lipid Composition [J].
Butler, Lisa M. ;
Mah, Chui Yan ;
Machiels, Jelle ;
Vincent, Andrew D. ;
Irani, Swati ;
Mutuku, Shadrack M. ;
Spotbeen, Xander ;
Bagadi, Muralidhararao ;
Waltregny, David ;
Moldovan, Max ;
Dehairs, Jonas ;
Vanderhoydonc, Frank ;
Bloch, Katarzyna ;
Das, Rajdeep ;
Stahl, Jurgen ;
Kench, James G. ;
Gevaert, Thomas ;
Derua, Rita ;
Waelkens, Etienne ;
Nassar, Zeyad D. ;
Selth, Luke A. ;
Trim, Paul J. ;
Snel, Marten F. ;
Lynn, David J. ;
Tilley, Wayne D. ;
Horvath, Lisa G. ;
Centenera, Margaret M. ;
Swinnen, Johannes, V .
CANCER RESEARCH, 2021, 81 (19) :4981-4993
[5]  
Centenera M.M., 2021, Cancer Res, V81, P1704, DOI DOI 10.1158/0008-5472.CAN-20-2511
[6]   Interleukin-10 Signaling in Regulatory T Cells Is Required for Suppression of Th17 Cell-Mediated Inflammation [J].
Chaudhry, Ashutosh ;
Samstein, Robert M. ;
Treuting, Piper ;
Liang, Yuqiong ;
Pils, Marina C. ;
Heinrich, Jan-Michael ;
Jack, Robert S. ;
Wunderlich, F. Thomas ;
Bruening, Jens C. ;
Mueller, Werner ;
Rudensky, Alexander Y. .
IMMUNITY, 2011, 34 (04) :566-578
[7]   Tumor-associated macrophages: an accomplice in solid tumor progression [J].
Chen, Yibing ;
Song, Yucen ;
Du, Wei ;
Gong, Longlong ;
Chang, Haocai ;
Zou, Zhengzhi .
JOURNAL OF BIOMEDICAL SCIENCE, 2019, 26 (01)
[8]   Lipid metabolism reprogramming and its potential targets in cancer [J].
Cheng, Chunming ;
Geng, Feng ;
Cheng, Xiang ;
Guo, Deliang .
CANCER COMMUNICATIONS, 2018, 38
[9]   Lipids in the tumor microenvironment: From cancer progression to treatment [J].
Corn, Kevin C. ;
Windham, McKenzie A. ;
Rafat, Marjan .
PROGRESS IN LIPID RESEARCH, 2020, 80
[10]   EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer [J].
Cornford, Philip ;
van den Bergh, Roderick C. N. ;
Briers, Erik ;
Van den Broeck, Thomas ;
Cumberbatch, Marcus G. ;
De Santis, Maria ;
Fanti, Stefano ;
Fossati, Nicola ;
Gandaglia, Giorgio ;
Gillessen, Silke ;
Grivas, Nikolaos ;
Grummet, Jeremy ;
Henry, Ann M. ;
van der Kwast, Theodorus H. ;
Lam, Thomas B. ;
Lardas, Michael ;
Liew, Matthew ;
Mason, Malcolm D. ;
Moris, Lisa ;
Oprea-Lager, Daniela E. ;
van der Poel, Henk G. ;
Rouviere, Olivier ;
Schoots, Ivo G. ;
Tilki, Derya ;
Wiegel, Thomas ;
Willemse, Peter-Paul M. ;
Mottet, Nicolas .
EUROPEAN UROLOGY, 2021, 79 (02) :263-282