Enhancing tomato growth and soil fertility under salinity stress using halotolerant plant growth-promoting rhizobacteria

被引:1
|
作者
Yan, Ning [1 ]
Wang, Weichi [1 ]
Mi, Tong [1 ]
Zhang, Xuefeng [1 ]
Li, Xinyue [1 ]
Du, Guodong [1 ]
机构
[1] Shenyang Agr Univ, Coll Hort, Shenyang 110866, Peoples R China
来源
PLANT STRESS | 2024年 / 14卷
关键词
Halotolerant bacteria; Salt stress; Plant growth; Soil amendment; Microbial community;
D O I
10.1016/j.stress.2024.100638
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soil salinization is a critical issue that not only hampers the efficiency and sustainability of global agricultural production but also poses significant challenges to the achievement of sustainable development goals across environmental, economic, and social dimensions. Halotolerant plant growth-promoting rhizobacteria (HPGPR) have the potential to mitigate abiotic stress, foster plant growth, and bolster the stress resistance capabilities of crops. This study conducted the isolation, identification, and characterization of HPGPR originating from a saline-alkali orchard area in northwest China. The efficacy of the isolated bacterial strains was evaluated through potted plant experiments, assessing the growth of tomato plants under in vitro conditions and under varying salinity stress. Ultimately, the study investigated the influence of these HPGPR on soil physicochemical properties, enzymatic activities, and the structure and composition of the microbial community. Upon isolating 12 bacterial strains, we conducted an in vitro assessment of their salt tolerance, ultimately singling out three robust isolates, which exhibited exceptional salt tolerance. Detailed 16S rRNA gene sequencing and meticulous taxonomic evaluation systematically assigned these isolates to Priestia endophyticus GSCK1 (accession number: OR569048), Bacillus atrophaeus GSCK2 (accession number: OR569061), and Serratia fonticola GSCK6 (accession number: OR569062), respectively. These strains exhibited notable biochemical and plant growth-promoting traits, including enzymatic activities and the production of indole-3-acetic acid. They significantly enhanced plant growth metrics and soil fertilities, particularly strain GSCK6, which also reshaped the soil microbial community, augmenting beneficial microbe abundance. The HPGPR treatment notably improved soil pH, nutrient availability, enzymatic activities, and reduced soil electrical conductivity, underscoring their potential in agricultural resilience against salinity. The eco-friendly salt stress mitigation strategy of HPGPR not only enhances soil quality and promotes plant growth by regulating the composition and function of microbial communities, but also provides a novel solution for global agricultural production. This approach is conducive to increasing crop yield and quality, reducing the limitations of saline-alkali land on agricultural production, and promoting food security and sustainable agricultural development.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Halotolerant plant growth-promoting rhizobacteria improve soil fertility and plant salinity tolerance for sustainable agriculture-A review
    AbuQamar, Synan F.
    El-Saadony, Mohamed T.
    Saad, Ahmed M.
    Desoky, El-Sayed M.
    Elrys, Ahmed S.
    Abd El-Mageed, Taia A.
    Semida, Wael M.
    Abdelkhalik, Abdelsattar
    Mosa, Walid F. A.
    Al Kafaas, Samar Sami
    Naser, Sana
    Ibrahim, Essam H.
    Alshamsi, Fatima M. K.
    Mathew, Betty T.
    El-Tarabily, Khaled A.
    PLANT STRESS, 2024, 12
  • [2] Role of Halotolerant Plant Growth-Promoting Rhizobacteria in Mitigating Salinity Stress: Recent Advances and Possibilities
    Kumar, Vikash
    Raghuvanshi, Nikhil
    Pandey, Abhay K.
    Kumar, Abhishek
    Thoday-Kennedy, Emily
    Kant, Surya
    AGRICULTURE-BASEL, 2023, 13 (01):
  • [3] Halotolerant Plant Growth-Promoting Rhizobacteria Induce Salinity Tolerance in Wheat by Enhancing the Expression of SOS Genes
    Urooj Haroon
    Maria Khizar
    Fiza Liaquat
    Musrat Ali
    Mahnoor Akbar
    Kinza Tahir
    Syeda Saira Batool
    Asif Kamal
    Hassan Javed Chaudhary
    Muhammad Farooq Hussain Munis
    Journal of Plant Growth Regulation, 2022, 41 : 2435 - 2448
  • [4] Halotolerant Plant Growth-Promoting Rhizobacteria Induce Salinity Tolerance in Wheat by Enhancing the Expression of SOS Genes
    Haroon, Urooj
    Khizar, Maria
    Liaquat, Fiza
    Ali, Musrat
    Akbar, Mahnoor
    Tahir, Kinza
    Batool, Syeda Saira
    Kamal, Asif
    Chaudhary, Hassan Javed
    Munis, Muhammad Farooq Hussain
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (06) : 2435 - 2448
  • [5] Improved salinity and dust stress tolerance in the desert halophyte Haloxylon aphyllum by halotolerant plant growth-promoting rhizobacteria
    Najafi Zilaie, Mahmood
    Mosleh Arani, Asghar
    Etesami, Hassan
    Dinarvand, Mehri
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [6] Influence of Plant Growth-Promoting Rhizobacteria on Corn Growth Under Different Fertility Sources
    Lin, Yaru
    Watts, Dexter B.
    Kloepper, Joseph W.
    Torbert, H. Allen
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2018, 49 (10) : 1239 - 1255
  • [7] Biocontrol of tomato wilt by plant growth-promoting rhizobacteria
    Guo, JH
    Qi, HY
    Guo, YH
    Ge, HL
    Gong, LY
    Zhang, LX
    Sun, PH
    BIOLOGICAL CONTROL, 2004, 29 (01) : 66 - 72
  • [8] Role of Plant Growth-Promoting Rhizobacteria (PGPR), Biochar, and Chemical Fertilizer under Salinity Stress
    Fazal, Aliya
    Bano, Asghari
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2016, 47 (17) : 1985 - 1993
  • [9] Plant Growth-Promoting Rhizobacteria-Mediated Adaptive Responses of Plants Under Salinity Stress
    Hoque, Md Najmol
    Hannan, Afsana
    Imran, Shahin
    Paul, Newton Chandra
    Mondal, Md Fuad
    Sadhin, Md Mahabubur Rahman
    Bristi, Jannatul Mawa
    Dola, Fariha Shahid
    Abu Hanif, Md
    Ye, Wenxiu
    Brestic, Marian
    Rhaman, Mohammad Saidur
    JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (03) : 1307 - 1326
  • [10] Halotolerant plant growth-promoting bacteria: Prospects for alleviating salinity stress in plants
    Etesami, Hassan
    Glick, Bernard R.
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 178