Galois sections and p-adic period mappings

被引:0
作者
Betts, L. alexander [1 ]
Stix, Jakob [2 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14850 USA
[2] Goethe Univ Frankfurt, Inst Math, Frankfurt, Germany
关键词
Arithmetic fundamental groups; Section Conjecture; p-adic Hodge theory; p- adic period maps; RATIONAL-POINTS;
D O I
10.4007/annals.2025.201.1.2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a number field not containing a CM subfield. For any smooth projective curve Y/K of genus >= 2, we prove that the image of the "Selmer" part of Grothendieck's section set inside the Kv-rational points Y (Kv) is finite for every finite place v. This gives an unconditional verification of a prediction of Grothendieck's section conjecture. In the process of proving our main result, we also refine and extend the method of Lawrence and Venkatesh, with potential consequences for explicit computations.
引用
收藏
页码:79 / 166
页数:88
相关论文
共 43 条
[1]  
[Anonymous], 2004, Progr. Math., DOI DOI 10.1007/978-1-4612-0041-3
[2]  
BALAKRISHNAN J. S., 2019, Research directions in number theory-Women in Numbers IV, Assoc. Women Math. Ser., V19, P67, DOI 10.1007/ 978-3-030-19478-9_3
[3]  
Berger L, 2002, INVENT MATH, V148, P219, DOI 10.1007/s002220100202
[4]   F-ISOCRYSTALS AND DE RHAM CO-HOMOLOGY .1. [J].
BERTHELOT, P ;
OGUS, A .
INVENTIONES MATHEMATICAE, 1983, 72 (02) :159-199
[5]  
BETTS L. A., 2023, arXiv
[6]   Local constancy of pro-unipotent Kummer maps [J].
Betts, Luke Alexander .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 127 (03) :836-888
[7]  
Bhatt B, 2019, PUBL MATH-PARIS, V129, P199, DOI 10.1007/s10240-019-00106-9
[8]   Quadratic Chabauty for (bi)elliptic curves and Kim's conjecture [J].
Bianchi, Francesca .
ALGEBRA & NUMBER THEORY, 2020, 14 (09) :2369-2416
[9]  
DEJONG AJ, 1995, COMPOS MATH, V97, P89
[10]  
Deligne P., 1974, Inst. Hautes Etudes Sci. Publ. Math, V43, P273, DOI [10.1007/BF02684373, DOI 10.1007/BF02684373]