Single-cell and spatial omics: exploring hypothalamic heterogeneity

被引:0
作者
Junaid, Muhammad [1 ,2 ]
Lee, Eun Jeong [2 ,3 ]
Lim, Su Bin [1 ,2 ]
机构
[1] Ajou Univ, Sch Med, Dept Biochem & Mol Biol, Suwon, South Korea
[2] Ajou Univ, Grad Sch, Dept Biomed Sci, Suwon, South Korea
[3] Ajou Univ, Sch Med, Dept Brain Sci, Suwon, South Korea
基金
新加坡国家研究基金会;
关键词
cellular diversity; hypothalamus; multi-omics; single-cell transcriptomics; spatial transcriptomics; TRANSCRIPTOMIC ANALYSIS; RNA; BRAIN; REVEALS; SEQ; EXPRESSION; NEURONS; ATLAS; DIVERSITY; CIRCUITS;
D O I
10.4103/NRR.NRR-D-24-00231
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.
引用
收藏
页码:1525 / 1540
页数:16
相关论文
共 159 条
[1]   Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems [J].
Alon, Shahar ;
Goodwin, Daniel R. ;
Sinha, Anubhav ;
Wassie, Asmamaw T. ;
Chen, Fei ;
Daugharthy, Evan R. ;
Bando, Yosuke ;
Kajita, Atsushi ;
Xue, Andrew G. ;
Marrett, Karl ;
Prior, Robert ;
Cui, Yi ;
Payne, Andrew C. ;
Yao, Chun-Chen ;
Suk, Ho-Jun ;
Wang, Ru ;
Yu, Chih-Chieh ;
Tillberg, Paul ;
Reginato, Paul ;
Pak, Nikita ;
Liu, Songlei ;
Punthambaker, Sukanya ;
Iyer, Eswar P. R. ;
Kohman, Richie E. ;
Miller, Jeremy A. ;
Lein, Ed S. ;
Lako, Ana ;
Cullen, Nicole ;
Rodig, Scott ;
Helvie, Karla ;
Abravanel, Daniel L. ;
Wagle, Nikhil ;
Johnson, Bruce E. ;
Klughammer, Johanna ;
Slyper, Michal ;
Waldman, Julia ;
Jane-Valbuena, Judit ;
Rozenblatt-Rosen, Orit ;
Regev, Aviv ;
Church, George M. ;
Marblestone, Adam H. ;
Boyden, Edward S. .
SCIENCE, 2021, 371 (6528) :481-+
[2]   Development of neuroendocrine neurons in the mammalian hypothalamus [J].
Alvarez-Bolado, Gonzalo .
CELL AND TISSUE RESEARCH, 2019, 375 (01) :23-39
[3]   The Human Brain Project-Synergy between neuroscience, computing, informatics, and brain-inspired technologies [J].
Amunts, Katrin ;
Knoll, Alois C. ;
Lippert, Thomas ;
Pennartz, Cyriel M. A. ;
Ryvlin, Philippe ;
Destexhe, Alain ;
Jirsa, Viktor K. ;
D'Angelo, Egidio ;
Bjaalie, Jan G. .
PLOS BIOLOGY, 2019, 17 (07)
[4]   Multimodal deep learning approaches for single-cell multi-omics data integration [J].
Athaya, Tasbiraha ;
Ripan, Rony Chowdhury ;
Li, Xiaoman ;
Hu, Haiyan .
BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
[5]   Hypothalamic Interactions with Large-Scale Neural Circuits Underlying Reinforcement Learning and Motivated Behavior [J].
Averbeck, Bruno B. ;
Murray, Elisabeth A. .
TRENDS IN NEUROSCIENCES, 2020, 43 (09) :681-694
[6]   The development and application of matrix assisted laser desorption electrospray ionization: The teenage years [J].
Bagley, Michael Caleb ;
Garrard, Kenneth P. ;
Muddiman, David C. .
MASS SPECTROMETRY REVIEWS, 2023, 42 (01) :35-66
[7]   Using deep learning to quantify neuronal activation from single-cell and spatial transcriptomic data [J].
Bahl, Ethan ;
Chatterjee, Snehajyoti ;
Mukherjee, Utsav ;
Elsadany, Muhammad ;
Vanrobaeys, Yann ;
Lin, Li-Chun ;
Mcdonough, Miriam ;
Resch, Jon ;
Giese, K. Peter ;
Abel, Ted ;
Michaelson, Jacob J. .
NATURE COMMUNICATIONS, 2024, 15 (01)
[8]   Three-dimensional (3D) imaging of lipids in skin tissues with infrared matrix-assisted laser desorption electrospray ionization (MALDESI) mass spectrometry [J].
Bai, Hongxia ;
Linder, Keith E. ;
Muddiman, David C. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2021, 413 (10) :2793-2801
[9]   Optogenetic and Chemogenetic Approaches for Studying Astrocytes and Gliotransmitters [J].
Bang, Juwon ;
Kim, Hak Yeong ;
Lee, Hyosang .
EXPERIMENTAL NEUROBIOLOGY, 2016, 25 (05) :205-221
[10]   What are we imaging? Software tools and experimental strategies for annotation and identification of small molecules in mass spectrometry imaging [J].
Baquer, Gerard ;
Semente, Lluc ;
Mahamdi, Toufik ;
Correig, Xavier ;
Rafols, Pere ;
Garcia-Altares, Maria .
MASS SPECTROMETRY REVIEWS, 2023, 42 (05) :1927-1964