Robust Automated Mouse Micro-CT Segmentation Using Swin UNEt TRansformers

被引:0
作者
Jiang, Lu [1 ]
Xu, Di [1 ]
Xu, Qifan [1 ]
Chatziioannou, Arion [2 ]
Iwamoto, Keisuke S. [3 ]
Hui, Susanta [4 ]
Sheng, Ke [1 ]
机构
[1] Univ Calif San Francisco, Dept Radiat Oncol, San Francisco, CA 94115 USA
[2] Univ Calif Los Angeles, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Radiat Oncol, Los Angeles, CA 90095 USA
[4] City Hope Natl Med Ctr, Dept Radiat Oncol, Duarte, CA 91010 USA
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 12期
关键词
micro-CT; mouse; organ segmentation; deep learning; Swin Transformers;
D O I
10.3390/bioengineering11121255
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Image-guided mouse irradiation is essential to understand interventions involving radiation prior to human studies. Our objective is to employ Swin UNEt TRansformers (Swin UNETR) to segment native micro-CT and contrast-enhanced micro-CT scans and benchmark the results against 3D no-new-Net (nnU-Net). Swin UNETR reformulates mouse organ segmentation as a sequence-to-sequence prediction task using a hierarchical Swin Transformer encoder to extract features at five resolution levels, and it connects to a Fully Convolutional Neural Network (FCNN)-based decoder via skip connections. The models were trained and evaluated on open datasets, with data separation based on individual mice. Further evaluation on an external mouse dataset acquired on a different micro-CT with lower kVp and higher imaging noise was also employed to assess model robustness and generalizability. The results indicate that Swin UNETR consistently outperforms nnU-Net and AIMOS in terms of the average dice similarity coefficient (DSC) and the Hausdorff distance (HD95p), except in two mice for intestine contouring. This superior performance is especially evident in the external dataset, confirming the model's robustness to variations in imaging conditions, including noise and quality, and thereby positioning Swin UNETR as a highly generalizable and efficient tool for automated contouring in pre-clinical workflows.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A perfusion procedure for imaging of the mouse cerebral vasculature by X-ray micro-CT
    Ghanavati, Sahar
    Yu, Lisa X.
    Lerch, Jason P.
    Sled, John G.
    JOURNAL OF NEUROSCIENCE METHODS, 2014, 221 : 70 - 77
  • [32] An Automated Detection and Segmentation of Thyroid Nodules using Res-UNet
    Nugroho, Hanung Adi
    Frannita, Eka Legya
    Nurfauzi, Rizki
    2021 8TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTERSCIENCE AND INFORMATICS (EECSI) 2021, 2021, : 181 - 185
  • [33] Evaluation of bone formation in neonatal mouse calvariae using micro-CT and histomorphometry: an in vitro study
    Zheng, Ren-jian
    Song, Jin-lin
    Wu, Xiao-hong
    Watts, David C.
    ACTA HISTOCHEMICA, 2020, 122 (07)
  • [34] Quantification of adiposity in small rodents using micro-CT
    Judex, S.
    Luu, Y. K.
    Ozcivici, E.
    Adler, B.
    Lublinsky, S.
    Rubin, C. T.
    METHODS, 2010, 50 (01) : 14 - 19
  • [35] Interior tomographic imaging of mouse heart in a carbon nanotube micro-CT
    Gong, Hao
    Liu, Rui
    Yu, Hengyong
    Lu, Jianping
    Zhou, Otto
    Kan, Lijuan
    He, Jia-Qiang
    Cao, Guohua
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2016, 24 (04) : 549 - 563
  • [36] Vascular imaging in small rodents using micro-CT
    Schambach, Sebastian J.
    Bag, Simona
    Groden, Christoph
    Schilling, Lothar
    Brockmann, Marc A.
    METHODS, 2010, 50 (01) : 26 - 35
  • [37] Micro-CT evaluation of rheumatoid arthritis mouse model disease progression: Manual tracings versus semi-automated routines
    Antill, A. C.
    Ballard, D. H.
    Hollister, A. M.
    Rogers, E. J.
    Yang, S.
    Lokitz, S. J.
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2016, 97 (06) : 651 - 655
  • [38] Automated Processing of Micro-CT Scans Using Descriptor-Based Registration of 3D Images
    Kaminski, Jakub
    Trzewiczek, Barlomiej
    Wronski, Sebastian
    Tarasiuk, Jacek
    ADVANCES IN SYSTEMS SCIENCE, ICSS 2016, 2017, 539 : 73 - 79
  • [39] Estimation of Mouse Organ Locations Through Registration of a Statistical Mouse Atlas With Micro-CT Images
    Wang, Hongkai
    Stout, David B.
    Chatziioannou, Arion F.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (01) : 88 - 102
  • [40] Analysis of micro-vasculature in whole kidney specimens using micro-CT
    Sled, JG
    Marxen, M
    Henkelman, RM
    DEVELOPMENTS IN X-RAY TOMOGRAPHY IV, 2004, 5535 : 53 - 64