Synergistic catalysis strategy of Lewis and Brønsted acids for superior aromatic production in biomass pyrolysis

被引:0
作者
Xia, Shengpeng [1 ,2 ,3 ,4 ]
Ou, Jionghua [1 ,2 ,6 ]
Liang, Junming [1 ,2 ,5 ]
Chen, Shu [6 ]
Wang, Zhihao [1 ,2 ,4 ]
Zhao, Zengli [1 ,2 ,3 ,4 ]
Zhao, Kun [1 ,2 ,3 ,4 ]
Zheng, Anqing [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Energy Convers, CAS Key Lab Renewable Energy, Guangzhou 510640, Peoples R China
[2] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangdong Prov Key Lab Renewable Energy, Guangzhou 510640, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Sci & Technol China, Sch Energy Sci & Engn, Guangzhou 510640, Peoples R China
[5] Guangdong Ocean Univ, Sch Mech Engn, Zhanjiang 524088, Peoples R China
[6] Zhongkai Univ Agr & Engn, Guangzhou 51022, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass; Pyrolysis; HZSM-5; Aromatics; Lewis acid; CONVERSION; ZEOLITE; OLEFINS; TOLUENE; LIGNIN; FURANS;
D O I
10.1016/j.indcrop.2025.120710
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Catalytic pyrolysis is a versatile technology platform for converting biomass waste into valuable aromatics. However, achieving high yields and selectivity remains a significant challenge, particularly at low catalyst-tobiomass ratios. Herein, it is demonstrated that a novel bifunctional WOx/HZSM-5 zeolite catalyst featuring synergistic Br & oslash;nsted/Lewis (B/L) acid sites is capable of significantly boosting aromatic production. Structural characterization shows that the incorporation of tungsten species leads to the formation of W-O-Si/Al structures, which generate new Lewis acid sites and optimize the B/L acid ratio. This precise tuning results in an impressive carbon yield of aromatic of 18.66 wt% with a catalyst-to-demineralized pine ratio as low as 2:1, demonstrating exceptional catalytic efficiency. Furthermore, our analysis reveals a nonlinear quadratic relationship between the B/L ratio and carbon yield of aromatic, highlighting the complex interplay between catalyst structure and performance. These findings provide a strategic avenue for acid site engineering in zeolite catalysts, advancing the efficient conversion of biomass into high-value aromatics.
引用
收藏
页数:11
相关论文
共 41 条
[1]   Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy [J].
Awasthi, Mukesh Kumar ;
Sarsaiya, Surendra ;
Patel, Anil ;
Juneja, Ankita ;
Singh, Rajendra Prasad ;
Yan, Binghua ;
Awasthi, Sanjeev Kumar ;
Jain, Archana ;
Liu, Tao ;
Duan, Yumin ;
Pandey, Ashok ;
Zhang, Zengqiang ;
Taherzadeh, Mohammad J. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 127
[2]   Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust [J].
Carlson, Torren R. ;
Cheng, Yu-Ting ;
Jae, Jungho ;
Huber, George W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (01) :145-161
[3]   Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks [J].
Carlson, Torren R. ;
Tompsett, Geoffrey A. ;
Conner, William C. ;
Huber, George W. .
TOPICS IN CATALYSIS, 2009, 52 (03) :241-252
[4]   Potential and challenges of zeolite chemistry in the catalytic conversion of biomass [J].
Ennaert, Thijs ;
Van Aelst, Joost ;
Dijkmans, Jan ;
De Clercq, Rik ;
Schutyser, Wouter ;
Dusselier, Michiel ;
Verboekend, Danny ;
Sels, Bert F. .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (03) :584-611
[5]   Catalytic pyrolysis of pine needles with nickel doped gamma-alumina: Reaction kinetics, mechanism, thermodynamics and products analysis [J].
Gupta, Shubhi ;
Mondal, Prasenjit .
JOURNAL OF CLEANER PRODUCTION, 2021, 286
[6]   Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: a review [J].
Hassan, N. S. ;
Jalil, A. A. ;
Hitam, C. N. C. ;
Vo, D. V. N. ;
Nabgan, W. .
ENVIRONMENTAL CHEMISTRY LETTERS, 2020, 18 (05) :1625-1648
[7]   Molecular shape selectivity of HZSM-5 in catalytic conversion of biomass pyrolysis vapors: The effective pore size [J].
Hu, Changsong ;
Zhang, Huiyan ;
Wu, Shiliang ;
Xiao, Rui .
ENERGY CONVERSION AND MANAGEMENT, 2020, 210
[8]   Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite [J].
Iliopoulou, E. F. ;
Stefanidis, S. D. ;
Kalogiannis, K. G. ;
Delimitis, A. ;
Lappas, A. A. ;
Triantafyllidis, K. S. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 127 :281-290
[9]   Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal [J].
Jae, Jungho ;
Coolman, Robert ;
Mountziaris, T. J. ;
Huber, George W. .
CHEMICAL ENGINEERING SCIENCE, 2014, 108 :33-46
[10]   Investigation into the shape selectivity of zeolite catalysts for biomass conversion [J].
Jae, Jungho ;
Tompsett, Geoffrey A. ;
Foster, Andrew J. ;
Hammond, Karl D. ;
Auerbach, Scott M. ;
Lobo, Raul F. ;
Huber, George W. .
JOURNAL OF CATALYSIS, 2011, 279 (02) :257-268