Lightweight coal and gangue detection algorithm based on LTC-Yolov8n

被引:0
作者
Liu, Ruizhe [1 ]
Wei, Chuanhua [1 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing, Peoples R China
关键词
Target detection; Yolov8; coal and gangue detection; lightweighting;
D O I
10.1080/19392699.2025.2480338
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate recognition of coal and gangue is an important step in realizing intelligent sorting of coal and gangue, to address the traditional target detection algorithm model of large computational volume, real-time is not high, a model based on the LTC-Yolov8n coal gangue detection is proposed. Firstly, a lightweight three-channel LTC block is constructed in the Yolov8n backbone to replace the Conv block, which enhances the feature extraction capability while reducing the computational effort. Second, the top-down characteristic fusion path at the neck is cut and a fusion module is introduced to increase the ability of the different scales of feature information to interact with each other. The multi-scale target detection head is constructed to realize feature enhancement. Finally, Focal-SIoU is used to replace the loss function, thus speeding up convergence during training and making further improvements to the precision of the model. Comparing with the yolov8n experimental results, our accuracy and recall improve from 96.4% and 95.5% to 98.1% and 97%, respectively. The floating-point computation is reduced by 34.5%, and the number of frames is improved to 147 frames per second so that the study can have certain theoretical values and technical references for coal and gangue detection.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] SCR-YOLOv8: an enhanced algorithm for target detection in sonar images
    Weng, Youlei
    Xiang, Xiaodong
    Ma, Linghang
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (02)
  • [42] Research on Defect Detection for Overhead Transmission Lines Based on the ABG-YOLOv8n Model
    Yu, Yang
    Lv, Hongfang
    Chen, Wei
    Wang, Yi
    ENERGIES, 2024, 17 (23)
  • [43] Text Detection Algorithm based on Improved YOLOv3
    Wang, Huibai
    Zhang, Zhenda
    PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 147 - 150
  • [44] Pedestrian detection algorithm based on improved YOLOv3
    Wang, Meiqing
    Karungaru, Stephen
    Kenji, Terada
    JOURNAL OF ADVANCED APPLIED SCIENTIFIC RESEARCH, 2024, 6 (03): : 203 - 215
  • [45] Track Obstacle Detection Algorithm Based on YOLOv3
    Cong, Zijian
    Li, Xiaoguang
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 12 - 17
  • [46] Lightweight target detection algorithm based on partial convolution
    Chen, Bingsen
    Liu, Zhibin
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [47] Research on Optical Remote Sensing Image Target Detection Technology Based on AMH-YOLOv8 Algorithm
    Cui, Chunhui
    Lv, Feiyang
    Wang, Rugang
    Wang, Yuanyuan
    Zhou, Feng
    Bian, Xuesheng
    IEEE ACCESS, 2024, 12 : 140809 - 140822
  • [48] A Flame Detection Algorithm Based on Improved YOLOv7
    Yan, Guibao
    Guo, Jialin
    Zhu, Dongyi
    Zhang, Shuming
    Xing, Rui
    Xiao, Zhangshu
    Wang, Qichao
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [49] A Fatigue Driving Detection Algorithm Based On YOLOv5
    Li Zhanli
    Jia Ni
    Jin Hongmei
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [50] YOLOv8s-Longan: a lightweight detection method for the longan fruit-picking UAV
    Li, Jun
    Wu, Kaixuan
    Zhang, Meiqi
    Chen, Hengxu
    Lin, Hengyi
    Mai, Yuju
    Shi, Linlin
    FRONTIERS IN PLANT SCIENCE, 2025, 15