Enhancing Quantum Key Distribution Security Through Hybrid Protocol Integration

被引:0
作者
Solaiman, Suhare [1 ]
机构
[1] Taif Univ, Coll Comp & Informat Technol, Dept Comp Sci, POB 11099, Taif 21944, Saudi Arabia
来源
SYMMETRY-BASEL | 2025年 / 17卷 / 03期
关键词
atomic protocol; encryption; hybrid protocol; photonic protocol; quantum key destitution;
D O I
10.3390/sym17030458
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the increasing complexity of cyber threats and the emergence of quantum computing, enhancing secure communication is essential. This study explores an effective hybrid quantum key distribution (QKD) protocol that integrates photonic and atomic systems to leverage their respective strengths. The concept of symmetry plays a crucial role in this context, as it underpins the principles of entanglement and the balance between key generation and error correction. The photonic system is used for the initial key generation, while the atomic system facilitates entanglement swapping, error correction, and privacy amplification. The comprehensive theoretical framework encompasses key components, detailed security proofs, performance metrics, and an analysis of system vulnerabilities, illustrating the resilience of the hybrid protocol against potential threats. Extensive experimental studies demonstrate that the hybrid QKD protocol seamlessly integrates photonic and atomic systems, enabling secure key distribution with minimal errors and loss rates over long distances. This combination of the two systems reveals exceptional resilience against eavesdropping, significantly improving both security and robustness compared with traditional QKD protocols. Consequently, this makes it a compelling solution for secure communication in the increasingly digital world.
引用
收藏
页数:20
相关论文
共 30 条
[1]  
Aumasson J.P., 2014, The Hash Function, DOI [10.1007/978-3-662-44757-4, DOI 10.1007/978-3-662-44757-4]
[2]  
Aumasson JP, 2013, P INT C APPL CRYPT N, V11, P119, DOI 10.1007/978-3-642-38980
[3]   Quantum key distribution with entangled photons generated on demand by a quantum dot [J].
Basset, Francesco Basso ;
Valeri, Mauro ;
Roccia, Emanuele ;
Muredda, Valerio ;
Poderini, Davide ;
Neuwirth, Julia ;
Spagnolo, Nicolo ;
Rota, Michele B. ;
Carvacho, Gonzalo ;
Sciarrino, Fabio ;
Trotta, Rinaldo .
SCIENCE ADVANCES, 2021, 7 (12)
[4]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[5]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[6]   Precise atom manipulation through deep reinforcement learning [J].
Chen, I-Ju ;
Aapro, Markus ;
Kipnis, Abraham ;
Ilin, Alexander ;
Liljeroth, Peter ;
Foster, Adam S. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[7]   Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation [J].
Chung, SY ;
Richardson, TJ ;
Urbanke, RL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :657-670
[8]   Atomic Clocks Technologies for Twin -Field QKD in Real World [J].
Clivati, Cecilia ;
Meda, Alice ;
Donadello, Simone ;
Levi, Filippo ;
Genovese, Marco ;
Mura, Alberto ;
Salvatore, Virz, I ;
Pittaluga, Mirko ;
Yuan, Zhiliang ;
Shields, Andrew J. ;
Lucamarini, Marco ;
Degiovanni, Ivo P. ;
Calonico, Davide .
2023 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION, OFC, 2023,
[9]  
Dervisevic E, 2024, Arxiv, DOI arXiv:2408.04580
[10]   Simultaneous quantum identity authentication scheme utilizing entanglement swapping with secret key preservation [J].
Dutta, Arindam ;
Pathak, Anirban .
MODERN PHYSICS LETTERS A, 2025, 40 (01)