Research progress on P2-type layered oxide cathode materials for sodium-ion batteries

被引:8
作者
Wu, Chen [1 ,3 ,4 ]
Xu, Yuxing [1 ,4 ]
Song, Jiechen [1 ,3 ,4 ]
Hou, Ying [1 ,3 ,4 ]
Jiang, Shiyang [1 ,3 ,4 ]
He, Rui [5 ]
Wei, Aijia [5 ]
Tan, Qiangqiang [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Mesosci & Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
[4] Langfang Technol Serv Ctr Green Ind, Hebei Engn Res Ctr Power & Energy Storage Battery, Hebei Technol Innovat Ctr Adv Energy Mat, Hebei Mfg Ind Innovat Ctr New Energy Mat & Key Equ, Langfang 065001, Peoples R China
[5] Hebei Acad Sci, Inst Energy Resources, Shijiazhuang 050081, Hebei, Peoples R China
基金
北京市自然科学基金;
关键词
Na plus /vacancy ordering; P2-O2 phase transition; Optimizing components; Interface control; Structural design; P2-Na; 0.67; Mn; Ni; 0.33; O; 2; TRANSITION-METAL OXIDES; OXYGEN REDOX CHEMISTRY; HIGH-VOLTAGE CATHODE; PHASE-TRANSITION; ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; POSITIVE ELECTRODE; ENHANCED PERFORMANCE; CYCLING PERFORMANCE; NACRO2; CATHODE;
D O I
10.1016/j.cej.2024.157264
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The P2-Na 0.67 Ni 0.33 Mn 0.67 O 2 material, renowned for the high sodium-ion (Na+) diffusion rate and conductivity, exhibits remarkable rate capability and cycling performance, making it a promising candidate for the cathode of SIBs. However, the performance of the P2-Na 0.67 Ni 0.33 Mn 0.67 O 2 cathode is hindered due to high-voltage phase transitions, structural reconstructions, oxygen release, metal dissolution, and air sensitivity. To cope with these problems, rational component regulation and structural design have been explored in recent years, but lack of systematic analysis and organization. Herein, from the relationship between the structure and performance of materials, the related mechanisms that give rise to these problems, and the advancements in modifying P2Na 0.67 Ni 0.33 Mn 0.67 O 2 cathode through various strategies including element doping, surface engineering, multiphase composites, and innovative configuration designs are reviewed comprehensively. Finally, some insights on the innovative research direction, potential modification strategies, and development trends of P2Na 0.67 Ni 0.33 Mn 0.67 O 2 cathode are presented. This review will supply a reference for the component regulation and structural design of the P2-Na 0.67 Ni 0.33 Mn 0.67 O 2 cathode, expected to facilitate the practical application of the P2-type layered oxide cathodes.
引用
收藏
页数:33
相关论文
共 221 条
[41]   A general low-temperature synthesis route to polyanionic vanadium phosphate fluoride cathode materials: AVPO4F (A = Li, Na, K) and Na3V2(PO4)2F3 [J].
Goubard-Bretesche, Nicolas ;
Kemnitz, Erhard ;
Pinna, Nicola .
MATERIALS CHEMISTRY FRONTIERS, 2019, 3 (10) :2164-2174
[42]   Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries [J].
Gu, Meng ;
Genc, Arda ;
Belharouak, Ilias ;
Wang, Dapeng ;
Amine, Khalil ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Browning, Nigel D. ;
Liu, Jun ;
Wang, Chongmin .
CHEMISTRY OF MATERIALS, 2013, 25 (11) :2319-2326
[43]  
Guignard M, 2013, NAT MATER, V12, P74, DOI [10.1038/nmat3478, 10.1038/NMAT3478]
[44]   Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance [J].
Guo, Shaohua ;
Sun, Yang ;
Yi, Jin ;
Zhu, Kai ;
Liu, Pan ;
Zhu, Yanbei ;
Zhu, Guo-zhen ;
Chen, Mingwei ;
Ishida, Masayoshi ;
Zhou, Haoshen .
NPG ASIA MATERIALS, 2016, 8 :e266-e266
[45]   Sodium layered oxide cathodes: properties, practicality and prospects [J].
Guo, Yu-Jie ;
Jin, Ruo-Xi ;
Fan, Min ;
Wang, Wen-Peng ;
Xin, Sen ;
Wan, Li-Jun ;
Guo, Yu-Guo .
CHEMICAL SOCIETY REVIEWS, 2024, 53 (15) :7828-7874
[46]   A rechargeable sodium-ion battery using a nanostructured Sb-C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode [J].
Hasa, Ivana ;
Passerini, Stefano ;
Hassoun, Jusef .
RSC ADVANCES, 2015, 5 (60) :48928-48934
[47]   A Comparative Study of Layered Transition Metal Oxide Cathodes for Application in Sodium-Ion Battery [J].
Hasa, Ivana ;
Buchholz, Daniel ;
Passerini, Stefano ;
Hassoun, Jusef .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (09) :5206-5212
[48]   High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium-Ion Batteries [J].
Hasa, Ivana ;
Buchholz, Daniel ;
Passerini, Stefano ;
Scrosati, Bruno ;
Hassoun, Jusef .
ADVANCED ENERGY MATERIALS, 2014, 4 (15)
[49]   High-Voltage Na0.76Ni0.25-x/2Mg x/2Mn0.75O2-x F x Cathode Improved by One-Step In Situ MgF2 Doping with Superior Low-Temperature Performance and Extra-Stable Air Stability [J].
He, Shunli ;
Shen, Xing ;
Han, Miao ;
Liao, Yanshun ;
Xu, Lifeng ;
Yang, Ni ;
Guo, Yiming ;
Li, Bochen ;
Shen, Jie ;
Zha, Cheng ;
Li, Yali ;
Wang, Meng ;
Wang, Lian ;
Su, Yuefeng ;
Wu, Feng .
ACS NANO, 2024, 18 (17) :11375-11388
[50]   Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries [J].
He, Xin ;
Wang, Jun ;
Qiu, Bao ;
Paillard, Elie ;
Ma, Chuze ;
Cao, Xia ;
Liu, Haodong ;
Stan, Marian Cristian ;
Liu, Haidong ;
Gallash, Tobias ;
Meng, Y. Shirley ;
Li, Jie .
NANO ENERGY, 2016, 27 :602-610