A Digitally Reconfigurable Low-Noise Amplifier with Robust Input Impedance for Machine Learning-Based Receiver Optimizations

被引:1
作者
Liu, Minghan [1 ]
Das, Diptashree [1 ]
Abdi, Mohammad [1 ]
Restuccia, Francesco [1 ]
Onabajo, Marvin [1 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
来源
2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024 | 2024年
基金
美国国家科学基金会;
关键词
Tunable low-noise amplifier; RF front-end; machine learning-based receiver optimization; RF FRONT-END; GAIN; CALIBRATION; LNA; NF;
D O I
10.1109/MWSCAS60917.2024.10658895
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The surge in demand for wireless connectivity has strongly incentivized advancements in reconfigurable radio frequency (RF) circuits. Although these circuits offer promising opportunities for machine learning (ML)-based optimization when devices are operating in the field, there is still an increasing need to adjust performance and power consumption over wider ranges, especially to dynamically minimize receiver power consumption when possible. In this paper, we present a novel low-noise amplifier (LNA) topology to dynamically scale power and performance to facilitate the realization of real-time ML methods for receiver optimization. This LNA is designed to avoid any significant input impedance matching degradation despite of a wide bias current tuning range to scale the gain, noise figure (NF) and input third-order intermodulation intercept point (IIP3). Simulations of the 2.4 GHz LNA design in 65 nm CMOS technology show its digitally-programmable gain from 17.07 dB to 28.15 dB, NF from 2.56 dB 5.18 dB, and IIP3 from -14.98 dBm to -9.85 dBm, while maintaining consistent input impedance matching with S-11 < -13 dB.
引用
收藏
页码:392 / 396
页数:5
相关论文
共 28 条
  • [1] Becerra-Alvarez EC, 2011, IEEE INT SYMP CIRC S, P273
  • [2] Chang C.-H., 2017, 2017 IEEE INT S CIRC
  • [3] Analysis and Demonstration of an IIP3 Improvement Technique for Low-Power RF Low-Noise Amplifiers
    Chang, Chun-Hsiang
    Onabajo, Marvin
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (03) : 859 - 869
  • [4] Input impedance matching optimization for adaptive low-power low-noise amplifiers
    Chang, Chun-hsiang
    Onabajo, Marvin
    [J]. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2013, 77 (03) : 583 - 592
  • [5] Self-calibration of input-match in RF front-end circuitry
    Das, T
    Gopalan, A
    Washburn, C
    Mukund, PR
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2005, 52 (12) : 821 - 825
  • [6] Dissanayake A, 2017, IEEE RAD FREQ INTEGR, P184, DOI 10.1109/RFIC.2017.7969048
  • [7] A CMOS Low-Noise Amplifier With Reconfigurable Input Matching Network
    El-Nozahi, Mohamed
    Sanchez-Sinencio, Edgar
    Entesari, Kamran
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2009, 57 (05) : 1054 - 1062
  • [8] A current injection built-in test technique for RF low-noise amplifiers
    Fan, Xiaohua
    Onabajo, Marvin
    Fernandez-Rodriguez, Felix O.
    Silva-Martinez, Jose
    Sanchez-Sinencio, Edgar
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (07) : 1794 - 1804
  • [9] A 0.6-V Low-Power Variable-Gain LNA in 0.18-μm CMOS Technology
    Hsieh, Jian-Yu
    Lin, Kuei-Yu
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (01) : 23 - 26
  • [10] An Analog On-Line Gain Calibration Loop for RF Amplifiers
    Hsieh, Yi-Keng
    Wu, Ya-Ru
    Ku, Po-Chih
    Lu, Liang-Hung
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2015, 62 (08) : 2003 - 2012