Learning Propagators for Sea Surface Height Forecasts Using Koopman Autoencoders

被引:0
作者
Brettin, Andrew E. [1 ]
Zanna, Laure [1 ]
Barnes, Elizabeth A. [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO USA
基金
美国国家科学基金会;
关键词
sea level; forecasting; machine learning; dynamical systems; OPTIMAL-GROWTH; MODEL; PREDICTABILITY; REPRESENTATIONS; VARIABILITY; SKILL;
D O I
10.1029/2024GL112835
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Due to the wide range of processes impacting the sea surface height (SSH) on daily-to-interannual timescales, SSH forecasts are hampered by numerous sources of uncertainty. While statistical-dynamical methods like Linear Inverse Modeling have been successful at making forecasts, they often rely on assumptions that can be hard to satisfy given the nonlinear dynamics of the climate. Here, we train convolutional autoencoders with a dynamical propagator in the latent space to generate forecasts of SSH anomalies. Learning a nonlinear dimensionality reduction and the prediction timestepping together results in a propagator that produces better predictions for daily- and monthly-averaged SSH in the North Pacific and Atlantic than if the dimensionality reduction and dynamics are learned separately. The reconstruction skill of the model highlights regions in which better representation results in improved predictions: in particular, the tropics for North Pacific daily SSH predictions and the Caribbean Current for the North Atlantic.
引用
收藏
页数:13
相关论文
共 83 条
[51]   Natural variation in ENSO flavors [J].
Newman, Matthew ;
Shin, Sang-Ik ;
Alexander, Michael A. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[52]   The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 [J].
O'Neill, Brian C. ;
Tebaldi, Claudia ;
van Vuuren, Detlef P. ;
Eyring, Veronika ;
Friedlingstein, Pierre ;
Hurtt, George ;
Knutti, Reto ;
Kriegler, Elmar ;
Lamarque, Jean-Francois ;
Lowe, Jason ;
Meehl, Gerald A. ;
Moss, Richard ;
Riahi, Keywan ;
Sanderson, Benjamin M. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (09) :3461-3482
[53]   Learning two-phase microstructure evolution using neural operators and autoencoder architectures [J].
Oommen, Vivek ;
Shukla, Khemraj ;
Goswami, Somdatta ;
Dingreville, Remi ;
Karniadakis, George Em .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[54]  
Oring A, 2021, PR MACH LEARN RES, V139
[55]   On lines and planes of closest fit to systems of points in space. [J].
Pearson, Karl .
PHILOSOPHICAL MAGAZINE, 1901, 2 (7-12) :559-572
[56]  
PENLAND C, 1993, MON WEATHER REV, V121, P2355, DOI 10.1175/1520-0493(1993)121<2355:FNHMGH>2.0.CO
[57]  
2
[58]  
PENLAND C, 1989, MON WEATHER REV, V117, P2165, DOI 10.1175/1520-0493(1989)117<2165:RFAFUP>2.0.CO
[59]  
2
[60]  
PENLAND C, 1995, J CLIMATE, V8, P1999, DOI 10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO