Statistical modeling of single-cell epitranscriptomics enabled trajectory and regulatory inference of RNA methylation

被引:0
作者
Wang, Haozhe [1 ]
Wang, Yue [4 ]
Zhou, Jingxian [3 ,6 ]
Song, Bowen [5 ,10 ]
Tu, Gang [1 ]
Nguyen, Anh [6 ]
Su, Jionglong [3 ]
Coenen, Frans [6 ]
Wei, Zhi [8 ]
Rigden, Daniel J. [7 ,9 ]
Meng, Jia [1 ,2 ,7 ]
机构
[1] Xian Jiaotong Liverpool Univ, XJTLU Entrepreneur Coll, Suzhou Key Lab Canc Biol & Chron Dis, Sch Sci,Dept Biosci & Bioinformat,Ctr Intelligent, Suzhou 215123, Jiangsu, Peoples R China
[2] Hubei Univ Med, Taihe Hosp, Regulatory Mech & Targeted Therapy Liver Canc Shiy, Inst Biomed Res,Hubei Prov Clin Res Ctr Precise Di, Shiyan 442000, Hubei, Peoples R China
[3] Xian Jiaotong Liverpool Univ, XJTLU Entrepreneur Coll, Sch AI & Adv Comp, Suzhou 215123, Jiangsu, Peoples R China
[4] Nanjing Univ Chinese Med, Sch Pharm, Nanjing 210023, Jiangsu, Peoples R China
[5] Nanjing Univ Chinese Med, Sch Med, Dept Publ Hlth, Nanjing 210023, Jiangsu, Peoples R China
[6] Univ Liverpool, Dept Comp Sci, Liverpool L7 8TX, England
[7] Univ Liverpool, Inst Syst Mol & Integrat Biol, Liverpool L7 8TX, England
[8] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[9] Guangzhou Med Univ, Sino French Hoffmann Inst, Sch Basic Med Sci, Guangzhou 511436, Guangdong, Peoples R China
[10] Peking Univ, Key Lab Bioorgan Chem & Mol Engn, Beijing Natl Lab Mol Sci, Coll Chem & Mol Engn,Synthet & Funct Biomol Ctr,Mi, Beijing 100871, Peoples R China
来源
CELL GENOMICS | 2025年 / 5卷 / 01期
基金
中国国家自然科学基金;
关键词
MESSENGER-RNA; SUBCELLULAR-LOCALIZATION; SEQ DATA; S-PHASE; M(6)A; EXPRESSION; CYCLE; REVEALS; PROTEIN; ANNOTATION;
D O I
10.1016/j.xgen.2024.100702
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
As a fundamental mechanism for gene expression regulation, post-transcriptional RNA methylation plays versatile roles in various biological processes and disease mechanisms. Recent advances in single-cell technology have enabled simultaneous profiling of transcriptome-wide RNA methylation in thousands of cells, holding the promise to provide deeper insights into the dynamics, functions, and regulation of RNA methylation. However, it remains a major challenge to determine how to best analyze single-cell epitranscriptomics data. In this study, we developed SigRM, a computational framework for effectively mining single-cell epitranscriptomics datasets with a large cell number, such as those produced by the scDART-seq technique from the SMART-seq2 platform. SigRM not only outperforms state-of-the-art models in RNA methylation site detection on both simulated and real datasets but also provides rigorous quantification metrics of RNA methylation levels. This facilitates various downstream analyses, including trajectory inference and regulatory network reconstruction concerning the dynamics of RNA methylation.
引用
收藏
页数:22
相关论文
共 111 条
[1]   Concepts and methods for transcriptome-wide prediction of chemical messenger RNA modifications with machine learning [J].
Acera Mateos, Pablo ;
Zhou, You ;
Zarnack, Kathi ;
Eyras, Eduardo .
BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
[2]   N6-methyladenosine marks primary microRNAs for processing [J].
Alarcon, Claudio R. ;
Lee, Hyeseung ;
Goodarzi, Hani ;
Halberg, Nils ;
Tavazoie, Sohail F. .
NATURE, 2015, 519 (7544) :482-+
[3]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[4]   NmRF: identification of multispecies RNA 2′-O-methylation modification sites from RNA sequences [J].
Ao, Chunyan ;
Zou, Quan ;
Yu, Liang .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
[5]   Gene regulatory network inference in the era of single-cell multi-omics [J].
Badia-i-Mompel, Pau ;
Wessels, Lorna ;
Mueller-Dott, Sophia ;
Trimbour, Remi ;
Flores, Ricardo Ramirez O. ;
Argelaguet, Ricard ;
Saez-Rodriguez, Julio .
NATURE REVIEWS GENETICS, 2023, 24 (11) :739-754
[6]   RM2Target: a comprehensive database for targets of writers, erasers and readers of RNA modifications [J].
Bao, Xiaoqiong ;
Zhang, Yin ;
Li, Huiqin ;
Teng, Yuyan ;
Ma, Lixia ;
Chen, Zhihang ;
Luo, Xiaotong ;
Zheng, Jian ;
Zhao, An ;
Ren, Jian ;
Zuo, Zhixiang .
NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) :D269-D279
[7]   The technological landscape and applications of single-cell multi-omics [J].
Baysoy, Alev ;
Bai, Zhiliang ;
Satija, Rahul ;
Fan, Rong .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2023, 24 (10) :695-713
[8]   Nano3P-seq: transcriptome-wide analysis of gene expression and tail dynamics using end-capture nanopore cDNA sequencing [J].
Begik, Oguzhan ;
Diensthuber, Gregor ;
Liu, Huanle ;
Delgado-Tejedor, Anna ;
Kontur, Cassandra ;
Niazi, Adnan Muhammad ;
Valen, Eivind ;
Giraldez, Antonio J. ;
Beaudoin, Jean-Denis ;
Mattick, John S. ;
Novoa, Eva Maria .
NATURE METHODS, 2023, 20 (01) :75-+
[9]   Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing [J].
Begik, Oguzhan ;
Lucas, Morghan C. ;
Pryszcz, Leszek P. ;
Ramirez, Jose Miguel ;
Medina, Rebeca ;
Milenkovic, Ivan ;
Cruciani, Sonia ;
Liu, Huanle ;
Vieira, Helaine Graziele Santos ;
Sas-Chen, Aldema ;
Mattick, John S. ;
Schwartz, Schraga ;
Novoa, Eva Maria .
NATURE BIOTECHNOLOGY, 2021, 39 (10) :1278-+
[10]   Summarizing and correcting the GC content bias in high-throughput sequencing [J].
Benjamini, Yuval ;
Speed, Terence P. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (10) :e72